login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359560
a(n) is the permanent of an n X n Hermitian Toeplitz matrix whose first row consists of 1, 2*i, ..., n*i, where i denotes the imaginary unit.
6
1, 1, 5, 18, 360, 2800, 151424, 1926704, 218991568, 3961998320, 815094714320, 19339258670304, 6524060415099520, 192715406460607360, 99364368150722162944, 3525158026102570745600, 2635328330670632415828224, 109381927750670379873854720, 113797518402277434839782802688
OFFSET
0,3
FORMULA
A359614(n) <= a(n) <= A359615(n).
EXAMPLE
a(3) = 18:
[ 1, 2*i, 3*i;
-2*i, 1, 2*i;
-3*i, -2*i, 1 ]
MAPLE
A359560 := proc(n)
local T, c, r ;
if n =0 then
return 1 ;
end if;
T := Matrix(n, n, shape=hermitian) ;
T[1, 1] := 1 ;
for c from 2 to n do
T[1, c] := c*I ;
end do:
for r from 2 to n do
for c from r to n do
T[r, c] := T[r-1, c-1] ;
end do:
end do:
LinearAlgebra[Permanent](T) ;
simplify(%) ;
end proc:
seq(A359560(n), n=0..15) ; # R. J. Mathar, Jan 31 2023
MATHEMATICA
Join[{1}, Table[Permanent[ToeplitzMatrix[Join[{1}, I Range[2, n]]]], {n, 18}]]
PROG
(PARI) a(n) = matpermanent(matrix(n, n, i, j, if (i==j, 1, if (i<j, I*(j-i+1), I*(j-i-1))))); \\ Michel Marcus, Jan 20 2023
(Python)
from sympy import Matrix, I
def A359560(n): return Matrix(n, n, [i-j+(1 if i>j else -1) if i!=j else I for i in range(n) for j in range(n)]).per()*(1, -I, -1, I)[n&3] if n else 1 # Chai Wah Wu, Jan 25 2023
CROSSREFS
Cf. A143182, A204235 (symmetric Toeplitz matrix).
Cf. A359559 (determinant), A359561, A359562.
Cf. A359614 (minimal), A359615 (maximal).
Sequence in context: A352663 A203180 A359616 * A139243 A347670 A139237
KEYWORD
nonn
AUTHOR
Stefano Spezia, Jan 06 2023
STATUS
approved