login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359559
a(n) is the determinant of an n X n Hermitian Toeplitz matrix whose first row consists of 1, 2*i, ..., n*i, where i denotes the imaginary unit.
7
1, 1, -3, -16, -36, -40, 20, 184, 400, 432, -112, -1472, -3136, -3328, 576, 9856, 20736, 21760, -2816, -59392, -123904, -129024, 13312, 333824, 692224, 716800, -61440, -1785856, -3686400, -3801088, 278528, 9207808, 18939904, 19464192, -1245184, -46137344, -94633984
OFFSET
0,3
FORMULA
A359614(n) <= a(n) <= A359615(n).
Conjectured formulas: (Start)
O.g.f.: (1 - 5*x + 9*x^2 - 12*x^3 + 10*x^4 - 4*x^5)/(1 - 2*x + 2*x^2)^3.
a(n) = 6*a(n-1) - 18*a(n-2) + 32*a(n-3) - 36*a(n-4) + 24*a(n-5) - 8*a(n-6) for n > 5.
E.g.f.: (2 + exp(x)*((1 + x)*(2 + x)*cos(x) - (1 + x + x^2)*sin(x)))/4. (End)
EXAMPLE
a(3) = -16:
[ 1, 2*i, 3*i;
-2*i, 1, 2*i;
-3*i, -2*i, 1 ]
MATHEMATICA
Join[{1}, Table[Det[ToeplitzMatrix[Join[{1}, I Range[2, n]]]], {n, 36}]]
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, if (i==j, 1, if (i<j, I*(j-i+1), I*(j-i-1))))); \\ Michel Marcus, Jan 20 2023
(Python)
from sympy import Matrix, I
def A359559(n): return Matrix(n, n, [i-j+(1 if i>j else -1) if i!=j else I for i in range(n) for j in range(n)]).det()*(1, -I, -1, I)[n&3] # Chai Wah Wu, Jan 25 2023
CROSSREFS
Cf. A001792 (symmetric Toeplitz matrix), A143182.
Cf. A359560 (permanent), A359561, A359562.
Cf. A359614 (minimal), A359615 (maximal).
Sequence in context: A013199 A162419 A322191 * A076153 A031302 A217130
KEYWORD
sign
AUTHOR
Stefano Spezia, Jan 06 2023
STATUS
approved