Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 25 2023 18:37:08
%S 1,1,-3,-16,-36,-40,20,184,400,432,-112,-1472,-3136,-3328,576,9856,
%T 20736,21760,-2816,-59392,-123904,-129024,13312,333824,692224,716800,
%U -61440,-1785856,-3686400,-3801088,278528,9207808,18939904,19464192,-1245184,-46137344,-94633984
%N a(n) is the determinant of an n X n Hermitian Toeplitz matrix whose first row consists of 1, 2*i, ..., n*i, where i denotes the imaginary unit.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%F A359614(n) <= a(n) <= A359615(n).
%F Conjectured formulas: (Start)
%F O.g.f.: (1 - 5*x + 9*x^2 - 12*x^3 + 10*x^4 - 4*x^5)/(1 - 2*x + 2*x^2)^3.
%F a(n) = 6*a(n-1) - 18*a(n-2) + 32*a(n-3) - 36*a(n-4) + 24*a(n-5) - 8*a(n-6) for n > 5.
%F E.g.f.: (2 + exp(x)*((1 + x)*(2 + x)*cos(x) - (1 + x + x^2)*sin(x)))/4. (End)
%e a(3) = -16:
%e [ 1, 2*i, 3*i;
%e -2*i, 1, 2*i;
%e -3*i, -2*i, 1 ]
%t Join[{1},Table[Det[ToeplitzMatrix[Join[{1},I Range[2,n]]]],{n,36}]]
%o (PARI) a(n) = matdet(matrix(n, n, i, j, if (i==j, 1, if (i<j, I*(j-i+1), I*(j-i-1))))); \\ _Michel Marcus_, Jan 20 2023
%o (Python)
%o from sympy import Matrix, I
%o def A359559(n): return Matrix(n,n,[i-j+(1 if i>j else -1) if i!=j else I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] # _Chai Wah Wu_, Jan 25 2023
%Y Cf. A001792 (symmetric Toeplitz matrix), A143182.
%Y Cf. A359560 (permanent), A359561, A359562.
%Y Cf. A359614 (minimal), A359615 (maximal).
%K sign
%O 0,3
%A _Stefano Spezia_, Jan 06 2023