login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322191
a(n) = coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)) ), for n >= 1.
2
1, 3, 16, 35, 141, 528, 1744, 6435, 25225, 92743, 352782, 1364216, 5200391, 20059504, 77744166, 300540195, 1166803263, 4540126119, 17672632090, 68923604295, 269166933163, 1052049488218, 4116715364076, 16124370433080, 63205314207841, 247959266485973, 973478300504884, 3824345303924544, 15033633249770955, 59132421617169838, 232714176627631040, 916312070471295267, 3609716208975605151, 14226520737620321469, 56093138920627037034
OFFSET
1,2
LINKS
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 141*x^5/5 + 528*x^6/6 + 1744*x^7/7 + 6435*x^8/8 + 25225*x^9/9 + 92743*x^10/10 + 352782*x^11/11 + 1364216*x^12/12 + ...
RELATED SERIES.
Given P(x) = Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)),
so that P(x) = 1/( (1 - (x^2-y^2)/(x-y)) * (1 - (x^4-y^4)/(x-y)) * (1 - (x^6-y^6)/(x-y)) * (1 - (x^8-y^8)/(x-y)) * (1 - (x^10-y^10)/(x-y)) * ...),
then
log( P(x) ) = (1*x + 1*y) + (1*x^2 + 2*x*y + 1*y^2)/2 + (4*x^3 + 6*x^2*y + 6*x*y^2 + 4*y^3)/3 + (1*x^4 + 4*x^3*y + 6*x^2*y^2 + 4*x*y^3 + 1*y^4)/4 + (6*x^5 + 10*x^4*y + 15*x^3*y^2 + 15*x^2*y^3 + 10*x*y^4 + 6*y^5)/5 + (4*x^6 + 12*x^5*y + 24*x^4*y^2 + 32*x^3*y^3 + 24*x^2*y^4 + 12*x*y^5 + 4*y^6)/6 + (8*x^7 + 14*x^6*y + 28*x^5*y^2 + 42*x^4*y^3 + 42*x^3*y^4 + 28*x^2*y^5 + 14*x*y^6 + 8*y^7)/7 + (1*x^8 + 8*x^7*y + 28*x^6*y^2 + 56*x^5*y^3 + 70*x^4*y^4 + 56*x^3*y^5 + 28*x^2*y^6 + 8*x*y^7 + 1*y^8)/8 + (13*x^9 + 27*x^8*y + 63*x^7*y^2 + 123*x^6*y^3 + 171*x^5*y^4 + 171*x^4*y^5 + 123*x^3*y^6 + 63*x^2*y^7 + 27*x*y^8 + 13*y^9)/9 + (6*x^10 + 20*x^9*y + 60*x^8*y^2 + 140*x^7*y^3 + 235*x^6*y^4 + 282*x^5*y^5 + 235*x^4*y^6 + 140*x^3*y^7 + 60*x^2*y^8 + 20*x*y^9 + 6*y^10)/10 + ...
in which the coefficients of x^n*y^n/(2*n), for n >= 1, equals
[2, 6, 32, 70, 282, 1056, 3488, 12870, 50450, 185486, ...]
which is twice this sequence.
The exponentiation of the l.g.f. begins
exp( L(x) ) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 49*x^5 + 158*x^6 + 480*x^7 + 1565*x^8 + 5372*x^9 + 18168*x^10 + 63018*x^11 + 223069*x^12 + ... + A322192(n)*x^n + ...
PROG
(PARI) N=35;
{L = sum(n=1, N+1, -log(1 - (x^(2*n) - y^(2*n))/(x - y) +O(x^(2*N+1)) +O(y^(2*N+1))) ); }
{a(n) = polcoeff( n*polcoeff( L, n, x), n, y)}
for(n=1, N, print1( a(n), ", ") )
CROSSREFS
Cf. A322192.
Sequence in context: A031080 A013199 A162419 * A359559 A076153 A031302
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 10 2018
STATUS
approved