login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322191 a(n) = coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)) ), for n >= 1. 2
1, 3, 16, 35, 141, 528, 1744, 6435, 25225, 92743, 352782, 1364216, 5200391, 20059504, 77744166, 300540195, 1166803263, 4540126119, 17672632090, 68923604295, 269166933163, 1052049488218, 4116715364076, 16124370433080, 63205314207841, 247959266485973, 973478300504884, 3824345303924544, 15033633249770955, 59132421617169838, 232714176627631040, 916312070471295267, 3609716208975605151, 14226520737620321469, 56093138920627037034 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..300

EXAMPLE

L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 141*x^5/5 + 528*x^6/6 + 1744*x^7/7 + 6435*x^8/8 + 25225*x^9/9 + 92743*x^10/10 + 352782*x^11/11 + 1364216*x^12/12 + ...

RELATED SERIES.

Given P(x) = Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)),

so that P(x) = 1/( (1 - (x^2-y^2)/(x-y)) * (1 - (x^4-y^4)/(x-y)) * (1 - (x^6-y^6)/(x-y)) * (1 - (x^8-y^8)/(x-y)) * (1 - (x^10-y^10)/(x-y)) * ...),

then

log( P(x) ) = (1*x + 1*y) + (1*x^2 + 2*x*y + 1*y^2)/2 + (4*x^3 + 6*x^2*y + 6*x*y^2 + 4*y^3)/3 + (1*x^4 + 4*x^3*y + 6*x^2*y^2 + 4*x*y^3 + 1*y^4)/4 + (6*x^5 + 10*x^4*y + 15*x^3*y^2 + 15*x^2*y^3 + 10*x*y^4 + 6*y^5)/5 + (4*x^6 + 12*x^5*y + 24*x^4*y^2 + 32*x^3*y^3 + 24*x^2*y^4 + 12*x*y^5 + 4*y^6)/6 + (8*x^7 + 14*x^6*y + 28*x^5*y^2 + 42*x^4*y^3 + 42*x^3*y^4 + 28*x^2*y^5 + 14*x*y^6 + 8*y^7)/7 + (1*x^8 + 8*x^7*y + 28*x^6*y^2 + 56*x^5*y^3 + 70*x^4*y^4 + 56*x^3*y^5 + 28*x^2*y^6 + 8*x*y^7 + 1*y^8)/8 + (13*x^9 + 27*x^8*y + 63*x^7*y^2 + 123*x^6*y^3 + 171*x^5*y^4 + 171*x^4*y^5 + 123*x^3*y^6 + 63*x^2*y^7 + 27*x*y^8 + 13*y^9)/9 + (6*x^10 + 20*x^9*y + 60*x^8*y^2 + 140*x^7*y^3 + 235*x^6*y^4 + 282*x^5*y^5 + 235*x^4*y^6 + 140*x^3*y^7 + 60*x^2*y^8 + 20*x*y^9 + 6*y^10)/10 + ...

in which the coefficients of x^n*y^n/(2*n), for n >= 1, equals

[2, 6, 32, 70, 282, 1056, 3488, 12870, 50450, 185486, ...]

which is twice this sequence.

The exponentiation of the l.g.f. begins

exp( L(x) ) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 49*x^5 + 158*x^6 + 480*x^7 + 1565*x^8 + 5372*x^9 + 18168*x^10 + 63018*x^11 + 223069*x^12 + ... + A322192(n)*x^n + ...

PROG

(PARI) N=35;

{L = sum(n=1, N+1, -log(1 - (x^(2*n) - y^(2*n))/(x - y) +O(x^(2*N+1)) +O(y^(2*N+1))) ); }

{a(n) = polcoeff( n*polcoeff( L, n, x), n, y)}

for(n=1, N, print1( a(n), ", ") )

CROSSREFS

Cf. A322192.

Sequence in context: A031080 A013199 A162419 * A359559 A076153 A031302

Adjacent sequences: A322188 A322189 A322190 * A322192 A322193 A322194

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 10 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 7 07:24 EST 2023. Contains 360112 sequences. (Running on oeis4.)