login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322192
G.f.: exp( Sum_{n>=1} A322191(n)*x^n/n ), where A322191(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x^(2*n) - y^(2*n))/(x - y)) ).
2
1, 1, 2, 7, 16, 49, 158, 480, 1565, 5372, 18168, 63018, 223069, 790675, 2837099, 10275237, 37365238, 136780746, 503454552, 1860283966, 6903032032, 25710869751, 96062102703, 360005362169, 1352895525992, 5096746479429, 19245661967963, 72829157526334, 276144309118166, 1048989168151209, 3991676310364631, 15213832997014866, 58073559070913632, 221990591912157497, 849708949683300960
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * 4^n / n^(3/2), where c = 0.585811817455537... - Vaclav Kotesovec, Jun 18 2019
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 49*x^5 + 158*x^6 + 480*x^7 + 1565*x^8 + 5372*x^9 + 18168*x^10 + 63018*x^11 + 223069*x^12 + ...
such that
log( A(x) ) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 141*x^5/5 + 528*x^6/6 + 1744*x^7/7 + 6435*x^8/8 + 25225*x^9/9 + 92743*x^10/10 + 352782*x^11/11 + 1364216*x^12/12 + ... + A322191(n)*x^n/n + ...
PROG
(PARI) N=35;
{L = sum(n=1, N+1, -log(1 - (x^(2*n) - y^(2*n))/(x-y) +O(x^(2*N+1)) +O(y^(2*N+1))) ); }
{A322191(n) = polcoeff( n*polcoeff( L, n, x), n, y)}
{a(n) = polcoeff( exp( sum(m=1, n, A322191(m)*x^m/m ) +x*O(x^n) ), n) }
for(n=0, N, print1( a(n), ", ") )
CROSSREFS
Cf. A322191.
Sequence in context: A368421 A248114 A330227 * A000512 A084079 A286848
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 10 2018
STATUS
approved