login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330227
Number of non-isomorphic fully chiral multiset partitions of weight n.
18
1, 1, 2, 7, 16, 49, 144, 447, 1417, 4707
OFFSET
0,3
COMMENTS
A multiset partition is fully chiral if every permutation of the vertices gives a different representative. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(4) = 16 multiset partitions:
{1} {11} {111} {1111}
{1}{1} {122} {1222}
{1}{11} {1}{111}
{1}{22} {11}{11}
{2}{12} {1}{122}
{1}{1}{1} {1}{222}
{1}{2}{2} {12}{22}
{1}{233}
{2}{122}
{1}{1}{11}
{1}{1}{22}
{1}{2}{22}
{1}{3}{23}
{2}{2}{12}
{1}{1}{1}{1}
{1}{2}{2}{2}
CROSSREFS
MM-numbers of these multiset partitions are the odd terms of A330236.
Non-isomorphic costrict (or T_0) multiset partitions are A316980.
Non-isomorphic achiral multiset partitions are A330223.
BII-numbers of fully chiral set-systems are A330226.
Fully chiral partitions are counted by A330228.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.
Sequence in context: A184352 A368421 A248114 * A322192 A000512 A084079
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 08 2019
STATUS
approved