OFFSET
0,3
COMMENTS
A multiset of multisets is achiral if it is not changed by any permutation of the vertices. An integer partition is achiral if taking the multiset of prime indices of each part gives an achiral multiset of multisets.
EXAMPLE
The a(1) = 1 through a(7) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (52)
(111) (31) (41) (42) (61)
(211) (221) (51) (331)
(1111) (311) (222) (421)
(2111) (321) (511)
(11111) (411) (2221)
(2211) (3211)
(3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Table[Length[Select[IntegerPartitions[n], Length[graprms[primeMS/@#]]==1&]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 08 2019
EXTENSIONS
More terms from Jinyuan Wang, Jun 26 2020
STATUS
approved