login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A330224
Number of achiral integer partitions of n.
9
1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 30, 32, 43, 46, 57, 64, 79, 83, 103, 107, 130, 141, 162, 171, 205, 214, 245, 258, 297, 307, 357, 373, 423, 441, 493, 513, 591, 607, 674, 702, 790, 817, 917, 938, 1040, 1078, 1186, 1216, 1362, 1395, 1534, 1580, 1738, 1779, 1956
OFFSET
0,3
COMMENTS
A multiset of multisets is achiral if it is not changed by any permutation of the vertices. An integer partition is achiral if taking the multiset of prime indices of each part gives an achiral multiset of multisets.
EXAMPLE
The a(1) = 1 through a(7) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (52)
(111) (31) (41) (42) (61)
(211) (221) (51) (331)
(1111) (311) (222) (421)
(2111) (321) (511)
(11111) (411) (2221)
(2211) (3211)
(3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Table[Length[Select[IntegerPartitions[n], Length[graprms[primeMS/@#]]==1&]], {n, 0, 30}]
CROSSREFS
The fully-chiral version is A330228.
The Heinz numbers of these partitions are given by A330232.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral factorizations are A330234.
Sequence in context: A217147 A029732 A037950 * A322527 A181160 A316968
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 08 2019
EXTENSIONS
More terms from Jinyuan Wang, Jun 26 2020
STATUS
approved