login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083323
a(n) = 3^n - 2^n + 1.
28
1, 2, 6, 20, 66, 212, 666, 2060, 6306, 19172, 58026, 175100, 527346, 1586132, 4766586, 14316140, 42981186, 129009092, 387158346, 1161737180, 3485735826, 10458256052, 31376865306, 94134790220, 282412759266, 847255055012
OFFSET
0,2
COMMENTS
Binomial transform of A000225 (if this starts 1,1,3,7....).
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 1) x = y. - Ross La Haye, Jan 10 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 1) x equals y. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
LINKS
M. H. Albert, M. D. Atkinson, and V. Vatter, Inflations of geometric grid classes: three case studies, arXiv:1209.0425 [math.CO], 2012.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], 2013.
FORMULA
G.f.: (1-4*x+5*x^2)/((1-x)*(1-2*x)*(1-3*x)).
E.g.f.: exp(3*x) - exp(2*x) + exp(x).
Row sums of triangle A134319. - Gary W. Adamson, Oct 19 2007
a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 10 2008
a(n) = Sum_{k=0..n}(binomial(n,k)*A255047(k)). - Yuchun Ji, Feb 23 2019
EXAMPLE
From Gus Wiseman, Dec 10 2019: (Start)
Also the number of achiral set-systems on n vertices, where a set-system is achiral if it is not changed by any permutation of the covered vertices. For example, the a(0) = 1 through a(3) = 20 achiral set-systems are:
0 0 0 0
{1} {1} {1}
{2} {2}
{12} {3}
{1}{2} {12}
{1}{2}{12} {13}
{23}
{123}
{1}{2}
{1}{3}
{2}{3}
{1}{2}{3}
{1}{2}{12}
{1}{3}{13}
{2}{3}{23}
{12}{13}{23}
{1}{2}{3}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{23}{123}
BII-numbers of these set-systems are A330217. Fully chiral set-systems are A330282, with covering case A330229.
(End)
MATHEMATICA
LinearRecurrence[{6, -11, 6}, {1, 2, 6}, 30] (* G. C. Greubel, Feb 13 2019 *)
PROG
(PARI) a(n)=3^n-2^n+1 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [3^n-2^n+1: n in [0..30]]; // G. C. Greubel, Feb 13 2019
(Sage) [3^n-2^n+1 for n in range(30)] # G. C. Greubel, Feb 13 2019
(GAP) List([0..30], n -> 3^n-2^n+1); # G. C. Greubel, Feb 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 27 2003
STATUS
approved