login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111285
Number of permutations avoiding the patterns {2431, 3421, 4231, 4321, 24513, 42513, 34512, 43512}; number of strong sorting class based on 2431.
2
1, 1, 2, 6, 20, 66, 216, 706, 2308, 7546, 24672, 80666, 263740, 862306, 2819336, 9217906, 30138228, 98537866, 322172592, 1053353226, 3443970860, 11260168946, 36815469656, 120369313506, 393551182948, 1286727730586, 4206996000512
OFFSET
0,3
LINKS
M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb., Vol. 12 (2005), R31.
FORMULA
a(n) = 4*a(n-1) - 3*a(n-2) + 2*a(n-3), n>=4.
G.f.: 1+x*(1-x)^2/(1-4*x+3*x^2-2*x^3).
a(n) = A175005(n)+A175005(n-2)-2*A175005(n-1). - R. J. Mathar, Aug 19 2022~
MATHEMATICA
a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 4a[n - 1] - 3a[n - 2] + 2a[n - 3]; Table[a[n], {n, 26}] (* Robert G. Wilson v *)
CoefficientList[Series[(1-2*x+x^2)/(1-4*x+3*x^2-2*x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -3, 2}, {1, 2, 6}, 40] (* Vincenzo Librandi, Jun 27 2012 *)
PROG
(Magma) I:=[1, 2, 6]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)+2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 27 2012
CROSSREFS
Sequence in context: A083323 A174846 A369431 * A052991 A246019 A226510
KEYWORD
nonn,easy
AUTHOR
Len Smiley, Nov 01 2005
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 12 2024
STATUS
approved