login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111283
Number of permutations avoiding the patterns {4321, 45132, 45231, 35412, 53412, 45213, 43512, 45312, 456123, 451623, 356124}; number of strong sorting class based on 4321.
0
1, 1, 2, 6, 23, 96, 409, 1751, 7505, 32176, 137956, 591501, 2536132, 10873981, 46623553, 199904321, 857114814, 3674987126, 15756967635, 67559972476, 289671844661, 1242004318751, 5325249092137, 22832672531956, 97897943538708
OFFSET
0,3
LINKS
M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb., Vol. 12 (2005), R31.
FORMULA
a(n) = 4*a(n-1) + a(n-2) + a(n-3) - 4; n>=4.
G.f.: 1+x*(1-3*x-x^2-x^3)/((1-x)*(1-4*x-x^2-x^3)). - Colin Barker, Jan 16 2012
MATHEMATICA
a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 4a[n - 1] + a[n - 2] + a[n - 3] - 4; Table[a[n], {n, 24}] (* Robert G. Wilson v, Nov 04 2005 *)
LinearRecurrence[{5, -3, 0, -1}, {1, 2, 6, 23}, 30] (* Harvey P. Dale, Jan 01 2017 *)
CROSSREFS
Sequence in context: A150295 A150296 A134064 * A150297 A374165 A150298
KEYWORD
nonn
AUTHOR
Len Smiley, Nov 01 2005
EXTENSIONS
More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, Mar 12 2024
STATUS
approved