login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052991
Expansion of (1-x-x^2)/(1-3x-x^2).
3
1, 2, 6, 20, 66, 218, 720, 2378, 7854, 25940, 85674, 282962, 934560, 3086642, 10194486, 33670100, 111204786, 367284458, 1213058160, 4006458938, 13232434974, 43703763860, 144343726554, 476734943522, 1574548557120, 5200380614882, 17175690401766, 56727451820180
OFFSET
0,2
FORMULA
G.f.: (-1+x+x^2)/(-1+3*x+x^2).
Recurrence: {a(0)=1, a(1)=2, a(n)+3*a(n+1)-a(n+2), a(2)=6}.
Sum(-2/13*(3*_alpha-2)*_alpha^(-1-n), _alpha=RootOf(-1+3*_Z+_Z^2)).
a(n) = Sum_{k=0..n} A155161(n,k)*2^k. - Philippe Deléham, Feb 08 2012
G.f.: 1/Q(0), where Q(k) = 1 + x^2 - (2*k+1)*x + x*(2*k-1 - x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
a(n) = A006190(n+1)-A006190(n)-A006190(n-1). - R. J. Mathar, Feb 27 2019
a(n) = 2*A006190(n) for n>=1. - Philippe Deléham, Mar 09 2023
MAPLE
spec := [S, {S=Sequence(Prod(Sequence(Union(Prod(Z, Z), Z)), Union(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x-x^2)/(1-3x-x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 1}, {1, 2, 6}, 30] (* Harvey P. Dale, May 10 2022 *)
CROSSREFS
Sequence in context: A174846 A369431 A111285 * A246019 A226510 A108627
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved