login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052992
Expansion of 1/((1 - x)*(1 - 2*x)*(1 + 2*x)).
11
1, 1, 5, 5, 21, 21, 85, 85, 341, 341, 1365, 1365, 5461, 5461, 21845, 21845, 87381, 87381, 349525, 349525, 1398101, 1398101, 5592405, 5592405, 22369621, 22369621, 89478485, 89478485, 357913941, 357913941, 1431655765, 1431655765, 5726623061, 5726623061
OFFSET
0,3
COMMENTS
a(n) is the sum of square divisors of 2^n. - Paul Barry, Oct 13 2005
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016
FORMULA
G.f.: 1/(-1+4*x^2)/(-1+x).
Recurrence: {a(1)=1, a(0)=1, -4*a(n) - 1 + a(n+2) = 0}.
a(n) = -1/3 + Sum((1/6)*(1+4*_alpha)*_alpha^(-1-n), where _alpha=RootOf(-1+4*_Z^2))
a(n) = Sum_{k=0..n} 2^k(1+(-1)^k)/2. - Paul Barry, Nov 24 2003
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3). - Paul Curtz, Apr 27 2011
a(n) = (4^(1 + floor(n/2)) - 1)/3. - Federico Provvedi, Oct 19 2018
a(n)-a(n-1) = A199572(n). - R. J. Mathar, Feb 27 2019
a(n) = A263053(n)/2. - Pascal Bisson, Feb 03 2022
MAPLE
spec := [S, {S=Prod(Sequence(Prod(Union(Z, Z), Union(Z, Z))), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-2x)(1+2x)), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 4, -4}, {1, 1, 5}, 40] (* or *) With[{c= LinearRecurrence[ {5, -4}, {1, 5}, 20]}, Riffle[c, c]] (* Harvey P. Dale, Sep 12 2015 *)
(4^(1 + Floor[(Range@40-1)/2])-1)/3 (* Federico Provvedi, Oct 19 2018 *)
PROG
(Python)
for n in range(0, 40): print((int(4**(1+int((n+2)/2)-1)/3)), end=', ') # Stefano Spezia, Oct 19 2018
(Python) [4**(1+(n+2)//2-1)//3 for n in range(40)] # Pascal Bisson, Feb 03 2022
(GAP) Flat(List([1..17], n->[(4^n-1)/3, (4^n-1)/3])); # Muniru A Asiru, Oct 21 2018
(Magma) [&+[2^k*(1 + (-1)^k)/2: k in [0..n]]: n in [0..50]]; // Vincenzo Librandi, Oct 21 2018
CROSSREFS
Sequence in context: A116400 A279810 A279750 * A280147 A279666 A376977
KEYWORD
nonn,easy,changed
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 08 2000
STATUS
approved