login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174846
E.g.f.: AGM(1, exp(4x)), where AGM(x, y) is the arithmetic-geometric mean of Gauss.
1
1, 2, 6, 20, 66, 212, 756, 3320, 11346, -11068, 14556, 7202120, 18928476, -1376971048, -3526491144, 394396083920, 1016723438706, -148493230507228, -383613651929844, 71479338751223720, 184867683069498036
OFFSET
0,2
COMMENTS
Conjecture: limit |a(n)/n!|^(-1/n) = r exists and is finite with r<0.8...
What is the radius of convergence of the e.g.f. as a power series in x?
r = Pi/4. - Vaclav Kotesovec, Sep 27 2019
LINKS
FORMULA
E.g.f.: exp(2x)*AGM(1, cosh(2x)).
E.g.f.: exp(2x)*AGM( cosh(x)^2, sqrt(cosh(2x)) ).
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 20*x^3/3! + 66*x^4/4! +...
Special value:
A(log(2)/8) = Pi^(3/2)*sqrt(8)/gamma(1/4)^2 = 1.19814023473...
MATHEMATICA
nmax = 20; CoefficientList[Series[E^(4*x)*Pi / (2*EllipticK[1 - E^(-8*x)]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 27 2019 *)
PROG
(PARI) {a(n)=n!*polcoeff(agm(1, exp(4*x+x*O(x^n))), n)}
CROSSREFS
Sequence in context: A279460 A096487 A083323 * A369431 A111285 A052991
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 24 2011
STATUS
approved