login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174845
O.g.f.: Sum_{n>=0} n^(2*n) * x^n / (1 - n^2*x)^n * exp( -n^2*x / (1 - n^2*x) ) / n!.
4
1, 1, 8, 153, 4981, 236970, 15211158, 1250791640, 127078235560, 15531504729378, 2237017556966100, 373533515381767037, 71351421971134445583, 15419725101750288678775, 3734978285744386546427032, 1005908662614385539285407741, 299140901286981469075716747245
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(2*n,k) for n>0 with a(0)=1. - Paul D. Hanna, Mar 08 2013
EXAMPLE
O.g.f.: A(x) = 1 + x + 8*x^2 + 153*x^3 + 4981*x^4 + 236970*x^5 +...
where
A(x) = 1 + x/(1-x)*exp(-x/(1-x)) + 2^4*x^2/(1-2^2*x)^2*exp(-2^2*x/(1-2^2*x))/2! + 3^6*x^3/(1-3^2*x)^3*exp(-3^2*x/(1-3^2*x))/3! + 4^8*x^4/(1-4^2*x)^4*exp(-4^2*x/(1-4^2*x))/4! +...
simplifies to a power series in x with integer coefficients.
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-1, k-1] * StirlingS2[2*n, k], {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 11 2014 *)
a[ n_] := SeriesCoefficient[ 1 + Sum[(k^2 x)^k / (1 - k^2 x)^k Exp[-k^2 x / (1 - k^2 x)] / k!, {k, n + 1}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
PROG
(PARI) a(n)=polcoeff(sum(k=0, n+1, (k^2*x)^k/(1-k^2*x)^k*exp(-k^2*x/(1-k^2*x+x*O(x^n)))/k!), n) \\ Paul D. Hanna, Nov 04 2012
for(n=0, 25, print1(a(n), ", "))
(PARI) Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)
{a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1) * Stirling2(2*n, k)))}
for(n=0, 25, print1(a(n), ", "))\\ Paul D. Hanna, Mar 08 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 06 2012
STATUS
approved