Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Aug 10 2018 18:09:33
%S 1,1,8,153,4981,236970,15211158,1250791640,127078235560,
%T 15531504729378,2237017556966100,373533515381767037,
%U 71351421971134445583,15419725101750288678775,3734978285744386546427032,1005908662614385539285407741,299140901286981469075716747245
%N O.g.f.: Sum_{n>=0} n^(2*n) * x^n / (1 - n^2*x)^n * exp( -n^2*x / (1 - n^2*x) ) / n!.
%H G. C. Greubel, <a href="/A174845/b174845.txt">Table of n, a(n) for n = 0..268</a>
%F a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(2*n,k) for n>0 with a(0)=1. - _Paul D. Hanna_, Mar 08 2013
%e O.g.f.: A(x) = 1 + x + 8*x^2 + 153*x^3 + 4981*x^4 + 236970*x^5 +...
%e where
%e A(x) = 1 + x/(1-x)*exp(-x/(1-x)) + 2^4*x^2/(1-2^2*x)^2*exp(-2^2*x/(1-2^2*x))/2! + 3^6*x^3/(1-3^2*x)^3*exp(-3^2*x/(1-3^2*x))/3! + 4^8*x^4/(1-4^2*x)^4*exp(-4^2*x/(1-4^2*x))/4! +...
%e simplifies to a power series in x with integer coefficients.
%t Flatten[{1,Table[Sum[Binomial[n-1,k-1] * StirlingS2[2*n,k],{k,1,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Aug 11 2014 *)
%t a[ n_] := SeriesCoefficient[ 1 + Sum[(k^2 x)^k / (1 - k^2 x)^k Exp[-k^2 x / (1 - k^2 x)] / k!, {k, n + 1}], {x, 0, n}]; (* _Michael Somos_, Jun 27 2017 *)
%o (PARI) a(n)=polcoeff(sum(k=0, n+1, (k^2*x)^k/(1-k^2*x)^k*exp(-k^2*x/(1-k^2*x+x*O(x^n)))/k!), n) \\ _Paul D. Hanna_, Nov 04 2012
%o for(n=0, 25, print1(a(n), ", "))
%o (PARI) Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)
%o {a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1) * Stirling2(2*n, k)))}
%o for(n=0,25,print1(a(n),", "))\\ _Paul D. Hanna_, Mar 08 2013
%Y Cf. A134055, A222053, A222054, A243942, A008277.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 06 2012