OFFSET
1,4
COMMENTS
A multiset of multisets is achiral if it is not changed by any permutation of the vertices. A factorization is achiral if taking the multiset of prime indices of each factor gives an achiral multiset of multisets.
EXAMPLE
The a(n) factorizations for n = 2, 6, 27, 36, 243, 216:
(2) (6) (27) (36) (243) (216)
(2*3) (3*9) (4*9) (3*81) (6*36)
(3*3*3) (6*6) (9*27) (8*27)
(2*3*6) (3*9*9) (12*18)
(2*2*3*3) (3*3*27) (4*6*9)
(3*3*3*9) (6*6*6)
(3*3*3*3*3) (2*3*36)
(2*3*4*9)
(2*3*6*6)
(2*2*3*3*6)
(2*2*2*3*3*3)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]], i}, {i, Length[p]}])], {p, Permutations[Union@@m]}]];
Table[Length[Select[facs[n], Length[graprms[primeMS/@#]]==1&]], {n, 100}]
CROSSREFS
The fully chiral version is A330235.
Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
MM-numbers of achiral multisets of multisets are A330232.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 08 2019
STATUS
approved