login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134319
Triangle read by rows. T(n, k) = binomial(n, k)*(2^k - 1 + 0^k).
2
1, 1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 4, 18, 28, 15, 1, 5, 30, 70, 75, 31, 1, 6, 45, 140, 225, 186, 63, 1, 7, 63, 245, 525, 651, 441, 127, 1, 8, 84, 392, 1050, 1736, 1764, 1016, 255, 1, 9, 108, 588, 1890, 3906, 5292, 4572, 2295, 511, 1, 10, 135, 840, 3150, 7812, 13230, 15240, 11475, 5110, 1023
OFFSET
0,5
LINKS
FORMULA
Previous definition: A007318 * a triangle by rows: for n > 0, n zeros followed by 2^n - 1.
Binomial transform of a diagonalized infinite lower triangular matrix with (1, 1, 3, 7, 15, ...) in the main diagonal and the rest zeros.
T(n,k) = |[1/(2^x)^k] 1 + (1-1/2^x)^n - (1-2/2^x)^n|. - Alois P. Heinz, Dec 10 2008
T(n,k) = binomial(n,k)*M(k) where M is Mersenne-like A255047. - Yuchun Ji, Feb 13 2019
EXAMPLE
First few rows of the triangle:
1;
1, 1;
1, 2, 3;
1, 3, 9, 7;
1, 4, 18, 28, 15;
1, 5, 30, 70, 75, 31;
1, 6, 45, 140, 225, 186, 63;
1, 7, 63, 245, 525, 651, 441, 127;
...
MAPLE
x:= 'x': T:= (n, k)-> `if` (k=0, 1, abs(coeff(expand((1-1/2^x)^n -(1-2/2^x)^n), 1/(2^x)^k))): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Dec 10 2008
# Alternative:
T := (n, k) -> binomial(n, k)*(2^k - 1 + 0^k):
for n from 0 to 7 do seq(T(n, k), k=0..n) od;
# Or as a recursion:
p := proc(n, m) option remember; if n = 0 then max(1, m) else
(m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1) fi end:
Trow := n -> seq((-1)^k * coeff(p(n, 0), x, n - k), k = 0..n): # Peter Luschny, Jun 23 2023
MATHEMATICA
max = 10; T1 = Table[Binomial[n, k], {n, 0, max}, {k, 0, max}]; T2 = Table[ If[n == k, 2^n-1, 0], {n, 0, max}, {k, 0, max}]; TT = T1.T2 ; T[_, 0]=1; T[n_, k_] := TT[[n+1, k+1]]; Table[T[n, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
CROSSREFS
Cf. A083313, A083323 (row sums), A255047 (main diagonal).
Sequence in context: A139633 A208330 A152440 * A135091 A171150 A111589
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Oct 19 2007
EXTENSIONS
More terms from Alois P. Heinz, Dec 10 2008
New name using a formula of Yuchun Ji by Peter Luschny, Jun 23 2023
STATUS
approved