login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152440
Riordan matrix (1/(1-x-x^2),x/(1-x-x^2)^2).
2
1, 1, 1, 2, 3, 1, 3, 9, 5, 1, 5, 22, 20, 7, 1, 8, 51, 65, 35, 9, 1, 13, 111, 190, 140, 54, 11, 1, 21, 233, 511, 490, 255, 77, 13, 1, 34, 474, 1295, 1554, 1035, 418, 104, 15, 1, 55, 942, 3130, 4578, 3762, 1925, 637, 135, 17, 1, 89, 1836, 7285, 12720, 12573, 7865, 3276
OFFSET
0,4
COMMENTS
From Philippe Deléham, Feb 20 2014: (Start)
T(n,0) = A000045(n+1);
T(n+1,1) = A001628(n);
T(n+2,2) = A001873(n);
T(n+3,3) = A001875(n).
Row sums are A238236(n). (End)
FORMULA
a(n,k) = sum( binomial(n-j-k,2k) binomial(n-j-k,j), j=0...(n-k)/2 )
a(n,k) = sum( binomial(i+2k,2k) binomial(n-i+k,i+2k), i=0...(n - k)/2 )
Recurrence: a(n+4,k+1) - 2 a(n+3,k+1) - a(n+3,k) - a(n+2,k+1) + 2 a(n+1,k+1) + a(n,k+1) = 0
GF for columns: 1/(1-x-x^2)(x/(1-x-x^2)^2)^k
GF: (1-x-x^2)/((1-x-x^2)^2-xy)
T(n,k) = A037027(n+k, 2*k). - Philippe Deléham, Feb 20 2014
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 1;
3, 9, 5, 1;
5, 22, 20, 7, 1;
8, 51, 65, 35, 9, 1;
13, 111, 190, 140, 54, 11, 1;
21, 233, 511, 490, 255, 77, 13, 1, etc.
- Philippe Deléham, Feb 20 2014
CROSSREFS
The first row is given by A000045.
Sequence in context: A133935 A139633 A208330 * A134319 A135091 A171150
KEYWORD
nonn,tabl,easy
AUTHOR
Emanuele Munarini, Dec 04 2008, Dec 05 2008
STATUS
approved