The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037027 Skew Fibonacci-Pascal triangle read by rows. 52
 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 10, 9, 4, 1, 8, 20, 22, 14, 5, 1, 13, 38, 51, 40, 20, 6, 1, 21, 71, 111, 105, 65, 27, 7, 1, 34, 130, 233, 256, 190, 98, 35, 8, 1, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1, 144, 744, 1836 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (0,1), (1,0), (2,0). - Joerg Arndt, Jun 30 2011 T(n,k) is the number of lattice paths of length n, starting from the origin and ending at (n,k), using horizontal steps H=(1,0), up steps U=(1,1) and down steps D=(1,-1), never containing UUU, DD, HD. For instance, for n=4 and k=2, we have the paths; HHUU, HUHU, HUUH, UHHU, UHUH, UUHH, UUDU, UDUU, UUUD. - Emanuele Munarini, Mar 15 2011 Row sums form Pell numbers A000129, T(n,0) forms Fibonacci numbers A000045, T(n,1) forms A001629. T(n+k,n-k) is polynomial sequence of degree k. T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, etc.). As a Riordan array, this is (1/(1-x-x^2),x/(1-x-x^2)). An interesting factorization is (1/(1-x^2),x/(1-x^2))*(1/(1-x),x/(1-x)) [abs(A049310) times A007318]. Diagonal sums are the Jacobsthal numbers A001045(n+1). - Paul Barry, Jul 28 2005 T(n,k) = T'(n+1,k+1), T' given by [0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2005 Equals A049310 * A007318 as infinite lower triangular matrices. - Gary W. Adamson, Oct 28 2007 This triangle may also be obtained from the coefficients of the Morgan-Voyce polynomials defined by: Mv(x, n) = (x + 1)*Mv(x, n - 1) + Mv(x, n - 2). - Roger L. Bagula, Apr 09 2008 Row sums are A000129. - Roger L. Bagula, Apr 09 2008 Absolute value of coefficients of the characteristic polynomial of tridiagonal matrices with 1's along the main diagonal, and i's along the superdiagonal and the subdiagonal (where i=sqrt(-1), see Mathematica program). - John M. Campbell, Aug 23 2011 A037027 is jointly generated with A122075 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=u(n-1,x)+x*v(n-1,x). See the Mathematica section at A122075. - Clark Kimberling, Mar 05 2012 For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013 For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013 Row n, for n>=0, shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^n which is the denominator of the n-th convergent of the continued fraction [x+1, x+1, x+1, ... ]; see A230000. - Clark Kimberling, Nov 13 2013 T(n,k) is the number of ternary words of length n having k letters  2 and avoiding a runs of odd length for the letter 0. - Milan Janjic, Jan 14 2017 LINKS Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened Harlan J. Brothers, Pascal's Prism: Supplementary Material Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4. T. Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003. P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003. Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, Nov. 2005, pp. 359-370. Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials. FORMULA T(n, m) = T'(n-1, m)+T'(n-2, m)+T'(n-1, m-1), where T'(n, m) = T(n, m) for n >= 0 and 0< = m< = n and T'(n, m) = 0 otherwise. G.f.: 1/(1 - y - y*z - y^2). G.f. for k-th column: x/(1-x-x^2)^k. T(n, m) = sum(binomial(m+k, m)*binomial(k, n-k-m), k=0..n-m), n>=m>=0, else 0. - Wolfdieter Lang, Jun 17 2002 T(n, m) = ((n-m+1)*T(n, m-1) + 2*(n+m)*T(n-1, m-1))/(5*m), n >= m >= 1; T(n, 0)= A000045(n+1); T(n, m)= 0 if n=0. - Paul D. Hanna, Feb 27 2004 T(n,k) = sum{j=0..n, C(n-j,j)*C(n-2*j,k)}; in Egorychev notation, T(n,k)=res_w(1-w-w^2)^(-k-1)*w^(-n+k+1). - Paul Barry, Sep 13 2006 Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for n = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 respectively. - Philippe Deléham, Nov 29 2009 T((m+1)*n+r-1,m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} k/n*T((m+1)*n-k-1,m*n-1)*(r+k,r), n>=m>1. T(n-1,m-1) = m/n*sum(k=1..n-m+1,k*A000045(k)*T(n-k-1,m-2),k,1,n-m+1), n>=m>1. - Vladimir Kruchinin, Mar 17 2011 T(n,k) = binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4) for n>=1. - Peter Luschny, Apr 25 2016 EXAMPLE Ratio of row polynomials R(3)/R(2) = (3+5*x+3*x^2+x^3)/(2+2*x+x^2) = [1+x;1+x,1+x]. Triangle begins: ..................{1}, .................{1,1}, ................{2,2,1}, ...............{3,5,3,1}, ..............{5,10,9,4,1}, ............{8,20,22,14,5,1}, ..........{13,38,51,40,20,6,1}, ........{21,71,111,105,65,27,7,1}, ......{34,130,233,256,190,98,35,8,1}, ....{55,235,474,594,511,315,140,44,9,1}, {89,420,942,1324,1295,924,490,192,54,10,1} MAPLE T := (n, k) -> `if`(n=0, 1, binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Apr 25 2016 MATHEMATICA Mv[x, -1] = 0; Mv[x, 0] = 1; Mv[x, 1] = 1 + x; Mv[x_, n_] := Mv[x, n] = ExpandAll[(x + 1)*Mv[x, n - 1] + Mv[x, n - 2]]; Table[ CoefficientList[ Mv[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Apr 09 2008 *) Abs[Flatten[Table[CoefficientList[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2]+KroneckerDelta[#1, #2+1]*I+KroneckerDelta[#1, #2-1]*I&, {n, n}], x], x], {n, 1, 20}]]] (* John M. Campbell, Aug 23 2011 *) T[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, -n, -4]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 16 2019, after Peter Luschny *) PROG (PARI) {T(n, k) = if( k<0 || k>n, 0, if( n==0 && k==0, 1, T(n-1, k) + T(n-1, k-1) + T(n-2, k)))}; /* Michael Somos, Sep 29 2003 */ (PARI) T(n, k)=if(n u + v + w) (ys ++ [0]) (xs ++ [0, 0]) ([0] ++ ys) -- Reinhard Zumkeller, Jul 07 2012 CROSSREFS A038112(n) = T(2n, n). A038137 is reflected version. Maximal row entries: A038149. Diagonal differences are in A055830. Vertical sums are in A091186. Cf. A007318, A049310, A000129, A155161, A122542, A059283, A228196, A228576. Some other Fibonacci-Pascal triangles: A027926, A036355, A074829, A105809, A109906, A111006, A114197, A162741, A228074. Sequence in context: A292630 A144287 A106196 * A182810 A139375 A106198 Adjacent sequences:  A037024 A037025 A037026 * A037028 A037029 A037030 KEYWORD easy,nonn,tabl AUTHOR Floor van Lamoen, Jan 01 1999 EXTENSIONS Examples from Paul D. Hanna, Feb 27 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 12:43 EST 2020. Contains 332280 sequences. (Running on oeis4.)