login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036355
Fibonacci-Pascal triangle read by rows.
26
1, 1, 1, 2, 2, 2, 3, 5, 5, 3, 5, 10, 14, 10, 5, 8, 20, 32, 32, 20, 8, 13, 38, 71, 84, 71, 38, 13, 21, 71, 149, 207, 207, 149, 71, 21, 34, 130, 304, 478, 556, 478, 304, 130, 34, 55, 235, 604, 1060, 1390, 1390, 1060, 604, 235, 55, 89, 420, 1177, 2272, 3310, 3736, 3310
OFFSET
0,4
COMMENTS
T(n,k) is the number of lattice paths from (0,0) to (n-k,k) using steps (1,0),(2,0),(0,1),(0,2). - Joerg Arndt, Jun 30 2011, corrected by Greg Dresden, Aug 25 2020
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
FORMULA
T(n, m) = T'(n-1, m-1)+T'(n-2, m-2)+T'(n-1, m)+T'(n-2, m), where T'(n, m) = T(n, m) if 0<=m<=n and n >= 0 and T'(n, m)=0 otherwise. Initial term T(0, 0)=1.
G.f.: 1/(1-(1+y)*x-(1+y^2)*x^2). - Vladeta Jovovic, Oct 11 2003
EXAMPLE
Triangle begins
1;
1, 1;
2, 2, 2;
3, 5, 5, 3;
5, 10, 14, 10, 5;
8, 20, 32, 32, 20, 8;
13, 38, 71, 84, 71, 38, 13;
21, 71, 149, 207, 207, 149, 71, 21;
34, 130, 304, 478, 556, 478, 304, 130, 34;
55, 235, 604, 1060, 1390, 1390, 1060, 604, 235, 55;
with indices
T(0,0);
T(1,0), T(1,1);
T(2,0), T(2,1), T(2,2);
T(3,0), T(3,1), T(3,2), T(3,3);
T(4,0), T(4,1), T(4,2), T(4,3), T(4,4);
For example, T(4,2) = 14 and there are 14 lattice paths from (0,0) to (4-2,2) = (2,2) using steps (1,0),(2,0),(0,1),(0,2). - Greg Dresden, Aug 25 2020
MATHEMATICA
nmax = 11; t[n_, m_] := t[n, m] = tp[n-1, m-1] + tp[n-2, m-2] + tp[n-1, m] + tp[n-2, m]; tp[n_, m_] /; 0 <= m <= n && n >= 0 := t[n, m]; tp[n_, m_] = 0; t[0, 0] = 1; Flatten[ Table[t[n, m], {n, 0, nmax}, {m, 0, n}]] (* Jean-François Alcover, Nov 09 2011, after formula *)
PROG
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [2, 0], [0, 1], [0, 2]];
/* Joerg Arndt, Jun 30 2011 */
(Haskell)
a036355 n k = a036355_tabl !! n !! k
a036355_row n = a036355_tabl !! n
a036355_tabl = [1] : f [1] [1, 1] where
f us vs = vs : f vs (zipWith (+)
(zipWith (+) ([0, 0] ++ us) (us ++ [0, 0]))
(zipWith (+) ([0] ++ vs) (vs ++ [0])))
-- Reinhard Zumkeller, Apr 23 2013
CROSSREFS
Row sums form sequence A002605. T(n, 0) forms the Fibonacci sequence (A000045). T(n, 1) forms sequence A001629.
Derived sequences: A036681, A036682, A036683, A036684, A036692 (central terms).
Some other Fibonacci-Pascal triangles: A027926, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074.
Sequence in context: A126337 A322261 A304718 * A228390 A309256 A095972
KEYWORD
nonn,tabl,easy,nice
AUTHOR
Floor van Lamoen, Dec 28 1998
STATUS
approved