login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036355 Fibonacci-Pascal triangle read by rows. 26
1, 1, 1, 2, 2, 2, 3, 5, 5, 3, 5, 10, 14, 10, 5, 8, 20, 32, 32, 20, 8, 13, 38, 71, 84, 71, 38, 13, 21, 71, 149, 207, 207, 149, 71, 21, 34, 130, 304, 478, 556, 478, 304, 130, 34, 55, 235, 604, 1060, 1390, 1390, 1060, 604, 235, 55, 89, 420, 1177, 2272, 3310, 3736, 3310 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(2,0),(0,1),(0,2). - Joerg Arndt, Jun 30 2011

For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013

For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013

LINKS

Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(n, m) = T'(n-1, m-1)+T'(n-2, m-2)+T'(n-1, m)+T'(n-2, m), where T'(n, m) = T(n, m) if 0<=m<=n and n >= 0 and T'(n, m)=0 otherwise. Initial term T(0, 0)=1.

G.f.: 1/(1-(1+y)*x-(1+y^2)*x^2). - Vladeta Jovovic, Oct 11 2003

EXAMPLE

Triangle begins

   1;

   1,   1;

   2,   2,   2;

   3,   5,   5,    3;

   5,  10,  14,   10,    5;

   8,  20,  32,   32,   20,    8;

  13,  38,  71,   84,   71,   38,   13;

  21,  71, 149,  207,  207,  149,   71,  21;

  34, 130, 304,  478,  556,  478,  304, 130,  34;

  55, 235, 604, 1060, 1390, 1390, 1060, 604, 235, 55;

MATHEMATICA

nmax = 11; t[n_, m_] := t[n, m] = tp[n-1, m-1] + tp[n-2, m-2] + tp[n-1, m] + tp[n-2, m]; tp[n_, m_] /; 0 <= m <= n && n >= 0 := t[n, m]; tp[n_, m_] = 0; t[0, 0] = 1; Flatten[ Table[t[n, m], {n, 0, nmax}, {m, 0, n}]] (* Jean-Fran├žois Alcover, Nov 09 2011, after formula *)

PROG

(PARI) /* same as in A092566 but use */

steps=[[1, 0], [2, 0], [0, 1], [0, 2]];

/* Joerg Arndt, Jun 30 2011 */

(Haskell)

a036355 n k = a036355_tabl !! n !! k

a036355_row n = a036355_tabl !! n

a036355_tabl = [1] : f [1] [1, 1] where

   f us vs = vs : f vs (zipWith (+)

                       (zipWith (+) ([0, 0] ++ us) (us ++ [0, 0]))

                       (zipWith (+) ([0] ++ vs) (vs ++ [0])))

-- Reinhard Zumkeller, Apr 23 2013

CROSSREFS

Row sums form sequence A002605. T(n, 0) forms the Fibonacci sequence (A000045). T(n, 1) forms sequence A001629.

Derived sequences: A036681, A036682, A036683, A036684, A036692 (central terms).

Cf. A007318, A051159, A228196, A228576.

Some other Fibonacci-Pascal triangles: A027926, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074.

Sequence in context: A126337 A322261 A304718 * A228390 A309256 A095972

Adjacent sequences:  A036352 A036353 A036354 * A036356 A036357 A036358

KEYWORD

nonn,tabl,easy,nice

AUTHOR

Floor van Lamoen, Dec 28 1998

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)