The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036355 Fibonacci-Pascal triangle read by rows. 26
 1, 1, 1, 2, 2, 2, 3, 5, 5, 3, 5, 10, 14, 10, 5, 8, 20, 32, 32, 20, 8, 13, 38, 71, 84, 71, 38, 13, 21, 71, 149, 207, 207, 149, 71, 21, 34, 130, 304, 478, 556, 478, 304, 130, 34, 55, 235, 604, 1060, 1390, 1390, 1060, 604, 235, 55, 89, 420, 1177, 2272, 3310, 3736, 3310 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS T(n,k) is the number of lattice paths from (0,0) to (n-k,k) using steps (1,0),(2,0),(0,1),(0,2). - Joerg Arndt, Jun 30 2011, corrected by Greg Dresden, Aug 25 2020 For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013 For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013 LINKS Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened FORMULA T(n, m) = T'(n-1, m-1)+T'(n-2, m-2)+T'(n-1, m)+T'(n-2, m), where T'(n, m) = T(n, m) if 0<=m<=n and n >= 0 and T'(n, m)=0 otherwise. Initial term T(0, 0)=1. G.f.: 1/(1-(1+y)*x-(1+y^2)*x^2). - Vladeta Jovovic, Oct 11 2003 EXAMPLE Triangle begins    1;    1,   1;    2,   2,   2;    3,   5,   5,    3;    5,  10,  14,   10,    5;    8,  20,  32,   32,   20,    8;   13,  38,  71,   84,   71,   38,   13;   21,  71, 149,  207,  207,  149,   71,  21;   34, 130, 304,  478,  556,  478,  304, 130,  34;   55, 235, 604, 1060, 1390, 1390, 1060, 604, 235, 55; with indices   T(0,0);   T(1,0),  T(1,1);   T(2,0),  T(2,1),  T(2,2);   T(3,0),  T(3,1),  T(3,2),  T(3,3);   T(4,0),  T(4,1),  T(4,2),  T(4,3),  T(4,4); For example, T(4,2) = 14 and there are 14 lattice paths from (0,0) to (4-2,2) = (2,2) using steps (1,0),(2,0),(0,1),(0,2). - Greg Dresden, Aug 25 2020 MATHEMATICA nmax = 11; t[n_, m_] := t[n, m] = tp[n-1, m-1] + tp[n-2, m-2] + tp[n-1, m] + tp[n-2, m]; tp[n_, m_] /; 0 <= m <= n && n >= 0 := t[n, m]; tp[n_, m_] = 0; t[0, 0] = 1; Flatten[ Table[t[n, m], {n, 0, nmax}, {m, 0, n}]] (* Jean-François Alcover, Nov 09 2011, after formula *) PROG (PARI) /* same as in A092566 but use */ steps=[[1, 0], [2, 0], [0, 1], [0, 2]]; /* Joerg Arndt, Jun 30 2011 */ (Haskell) a036355 n k = a036355_tabl !! n !! k a036355_row n = a036355_tabl !! n a036355_tabl = [1] : f [1] [1, 1] where    f us vs = vs : f vs (zipWith (+)                        (zipWith (+) ([0, 0] ++ us) (us ++ [0, 0]))                        (zipWith (+) ([0] ++ vs) (vs ++ [0]))) -- Reinhard Zumkeller, Apr 23 2013 CROSSREFS Row sums form sequence A002605. T(n, 0) forms the Fibonacci sequence (A000045). T(n, 1) forms sequence A001629. Derived sequences: A036681, A036682, A036683, A036684, A036692 (central terms). Cf. A007318, A051159, A228196, A228576. Some other Fibonacci-Pascal triangles: A027926, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074. Sequence in context: A126337 A322261 A304718 * A228390 A309256 A095972 Adjacent sequences:  A036352 A036353 A036354 * A036356 A036357 A036358 KEYWORD nonn,tabl,easy,nice AUTHOR Floor van Lamoen, Dec 28 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 11:44 EDT 2020. Contains 337880 sequences. (Running on oeis4.)