OFFSET
0,3
COMMENTS
T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0), (2,0), (1,1), and (1,2). - Joerg Arndt, Jun 30 2011
Diagonal of rational function 1/(1 - (x + x^2 + x*y + x*y^2)). - Gheorghe Coserea, Aug 06 2018
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1959
FORMULA
a(n) = sum(k=0..n, A037027(n, k)*C(k, n-k) ).
O.g.f. A(x) satisfies the equation (27*x^4 - 14*x^3 + 9*x^2 + 14*x - 5)*A(x)^3 + (4-3*x)*A(x) + 1 = 0. - Mark van Hoeij, Apr 16 2013
MAPLE
series(RootOf((27*x^4-14*x^3+9*x^2+14*x-5)*y^3+(4-3*x)*y+1, y), x=0, 30); # Mark van Hoeij, Apr 16 2013
MATHEMATICA
A037027[n_, k_] := Sum[Binomial[k+j, k]*Binomial[j, n-j-k], {j, 0, n-k}]; A037027[n_, 0] = Fibonacci[n+1]; a[n_] := Sum[A037027[n, k]*Binomial[k, n-k], {k, 0, n}]; Table[a(n), {n, 0, 26}] (* Jean-François Alcover, Jul 18 2011 *)
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k-1] + a[n, k-2] + a[n-1, k-1] + a[n-2, k-1]; a[_, _] = 0;
a[n_] := a[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Oct 06 2019, after Joerg Arndt *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(contfracpnqn(vector(n, i, 1+x+x^2))[1, 1], n, x))
(PARI) A037027(n, k)=if(n<k || k<0, 0, sum(j=0, n-k, binomial(j+k, k)*binomial(j, n- j-k))) a(n)=sum(k=0, n, A037027(n, k)*binomial(k, n-k))
(PARI) /* computation as lattice paths: */
N=40; /* that many terms */
B=matrix(N, N); B[1, 1]=1; /* whether T(n, k) memoized */
M=matrix(N, N); M[1, 1]=1; /* memoization for T(n, k) */
steps=[[1, 0], [2, 0], [1, 1], [1, 2]];
T(n, k)=
{
my(ret, dx, dy);
if ( n<0, return(0) );
if ( k<0, return(0) );
if ( B[n+1, k+1], return( M[n+1, k+1]) );
ret = 0;
for (s=1, #steps,
dx = steps[s][1];
dy = steps[s][2];
ret += T( n-dx, k-dy );
);
B[n+1, k+1] = 1;
M[n+1, k+1] = ret;
return( ret );
}
T(N-1, N-1); /* trigger computations */
for (n=1, N, print1(M[n, n], ", ")); /* show (diagonal) terms */
for(n=0, N-1, for(k=0, n, print1(T(n, k), ", "); ); print(); ); /* show triangle */
/* Joerg Arndt, Jun 30 2011 */
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Paul D. Hanna, Feb 28 2004
STATUS
approved