login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229900
G.f. satisfies: A(x) = x*exp( Sum_{n>=1} A(Lucas(n)*x^n) / n ).
2
1, 1, 3, 7, 22, 54, 192, 496, 1722, 4799, 17013, 48362, 169458, 498733, 1776570, 5331037, 18608396, 57109292, 201213331, 625146398, 2176243724, 6873338754, 24052502138, 76626395556, 265774736523, 856909651252, 2979519037203, 9675077715466, 33455355338926, 109591055905415
OFFSET
1,3
COMMENTS
Compare to: G(x) = x*exp( Sum_{n>=1} G(x^n)/n ), which is the g.f. of A000081, the number of rooted trees with n nodes.
Compare to: exp( Sum_{n>=1} Lucas(n)*x^n/n ) = 1/(1-x-x^2), which is the g.f. of the Fibonacci numbers.
The limit a(n+1)/a(n) seems to exist (near 3.5...); is this true?
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 7*x^4 + 22*x^5 + 54*x^6 + 192*x^7 + 496*x^8 +...
where
A(x) = x*exp(A(x) + A(3*x^2)/2 + A(4*x^3)/3 + A(7*x^4)/4 + A(11*x^5)/5 + A(18*x^6)/6 + A(29*x^7)/7 + A(47*x^8)/8 + A(76*x^9)/9 + A(123*x^10)/10 +...).
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(A=x); for(i=1, n, A=x*exp(sum(k=1, n, subst(A, x, Lucas(k)*x^k +x*O(x^n))/k))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A000032 (Lucas), A229807, A229901.
Sequence in context: A182174 A080882 A229807 * A079120 A092566 A036719
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 02 2013
STATUS
approved