OFFSET
1,3
COMMENTS
Compare to: G(x) = x*exp( Sum_{n>=1} G(x^n)/n ), which is the g.f. of A000081, the number of rooted trees with n nodes.
Compare to: exp( Sum_{n>=1} Lucas(n)*x^n/n ) = 1/(1-x-x^2), which is the g.f. of the Fibonacci numbers.
The limit a(n+1)/a(n) seems to exist (near 3.5...); is this true?
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 7*x^4 + 22*x^5 + 54*x^6 + 192*x^7 + 496*x^8 +...
where
A(x) = x*exp(A(x) + A(3*x^2)/2 + A(4*x^3)/3 + A(7*x^4)/4 + A(11*x^5)/5 + A(18*x^6)/6 + A(29*x^7)/7 + A(47*x^8)/8 + A(76*x^9)/9 + A(123*x^10)/10 +...).
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(A=x); for(i=1, n, A=x*exp(sum(k=1, n, subst(A, x, Lucas(k)*x^k +x*O(x^n))/k))); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 02 2013
STATUS
approved