login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229901
G.f. satisfies: A(x) = x*exp( Sum_{n>=1} A(2^n*x^n) / n ).
2
1, 2, 12, 120, 2208, 75840, 5026048, 654140416, 168815832320, 86777091183104, 89034709122434048, 182521862861195356160, 747975313568170390573056, 6128911186837999697172176896, 100428344706090874604628656668672, 3291036905110044354733349281915109376
OFFSET
1,2
COMMENTS
Compare to: G(x) = x*exp( Sum_{n>=1} G(x^n)/n ), which is the g.f. of A000081, the number of rooted trees with n nodes.
FORMULA
Limit a(n) / 2^(n*(n-1)/2) = 2.4760521181770989525583758338042055853633514575492...
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 12*x^3 + 120*x^4 + 2208*x^5 + 75840*x^6 + 5026048*x^7 + ...
where
A(x) = x*exp(A(2*x) + A(4*x^2)/2 + A(8*x^3)/3 + A(16*x^4)/4 + A(32*x^5)/5 + A(64*x^6)/6 + A(128*x^7)/7 + A(256*x^8)/8 + A(512*x^9)/9 + A(1024*x^10)/10 + ...).
PROG
(PARI) {a(n)=local(A=x); for(i=1, n, A=x*exp(sum(k=1, n, subst(A, x, 2^k*x^k +x*O(x^n))/k))); polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2013
STATUS
approved