login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092565
Triangle of coefficients T(n,k) (n>=0, 0<=k<=2n), read by rows, where the n-th row polynomial equals the numerator of the n-th convergent of the continued fraction [1+x+x^2;1+x+x^2,1+x+x^2,...] for n>0, with the zeroth row defined as T(0,0)=1.
2
1, 1, 1, 1, 2, 2, 3, 2, 1, 3, 5, 8, 7, 6, 3, 1, 5, 10, 19, 22, 22, 16, 10, 4, 1, 8, 20, 42, 58, 69, 63, 49, 30, 15, 5, 1, 13, 38, 89, 142, 191, 206, 191, 146, 95, 50, 21, 6, 1, 21, 71, 182, 327, 491, 602, 637, 573, 447, 296, 167, 77, 28, 7, 1, 34, 130, 363, 722, 1191, 1626
OFFSET
0,5
COMMENTS
T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(2,0),(1,1),(1,2). [Joerg Arndt, Jul 01 2011]
Diagonal forms A092566, row sums form A006190. Column T(n,0) forms Fibonacci numbers A000045, T(n,1) forms A001629.
LINKS
FORMULA
n-th row polynomial R(n) = sum_{k=0..n} A037027(n, k)*x^k*(1+x)^k; R(n+1)/R(n) = [1+x+x^2;1+x+x^2, ...(n+1)times..., 1+x+x^2] for n>=0; R(0)=1.
EXAMPLE
Ratio of row polynomials R(3)/R(2) = (3+5*x+8*x^2+7*x^3+6*x^4+3*x^5+x^6)/(2+2*x+3*x^2+2*x^3+x^4) = [1+x+x^2;1+x+x^2,1+x+x^2].
Rows begin:
1;
1, 1, 1;
2, 2, 3, 2, 1;
3, 5, 8, 7, 6, 3, 1;
5, 10, 19, 22, 22, 16, 10, 4, 1;
8, 20, 42, 58, 69, 63, 49, 30, 15, 5, 1;
13, 38, 89, 142, 191, 206, 191, 146, 95, 50, 21, 6, 1;
21, 71, 182, 327, 491, 602, 637, 573, 447, 296, 167, 77, 28, 7, 1;
34, 130, 363, 722, 1191, 1626, 1921, 1958, 1752, 1366, 931, 546, 273, 112, 36, 8, 1;
...
MAPLE
T:= proc(x, y) option remember; `if`(y<0 or y>2*x, 0, `if`(x=0, 1,
add(T(x-l[1], y-l[2]), l=[[1, 0], [2, 0], [1, 1], [1, 2]])))
end:
seq(seq(T(n, k), k=0..2*n), n=0..10); # Alois P. Heinz, Apr 16 2013
MATHEMATICA
A037027[n_, k_] := Sum[Binomial[k+j, k]*Binomial[j, n-j-k], {j, 0, n-k}]; A037027[n_, 0] = Fibonacci[n + 1]; row[n_] := CoefficientList[ Sum[A037027[n, k] x^k (1+x)^k, {k, 0, n}], x]; Flatten[Table[row[n], {n, 0, 8}]][[1 ;; 70]] (* Jean-François Alcover, Jul 18 2011 *)
PROG
(PARI) T(n, k)=if(2*n<k || k<0, 0, polcoeff(contfracpnqn(vector(n, i, 1+x+x^2))[1, 1], k, x))
(PARI) /* same as in A092566, but last line (output) replaced by the following */
/* show as triangle (0<=k<=2*n): */
{for (n=1, N, for (k=1, 2*n-1, print1(M[n, k], ", "); ); print(); ); }
/* Joerg Arndt, Jul 01 2011 */
CROSSREFS
Sequence in context: A304737 A374516 A369028 * A021452 A093420 A104897
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Feb 28 2004
STATUS
approved