|
|
A092563
|
|
Coefficients in asymptotic expansion of I_0(x)sqrt(2*Pi*x)/e^x in powers of 1/(16x).
|
|
2
|
|
|
1, 2, 18, 300, 7350, 238140, 9604980, 463783320, 26087811750, 1675417243500, 120965124980700, 9699203657543400, 855146455806743100, 82225620750648375000, 8563211075317523625000, 960221401912271649150000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Central coefficients in exponential Riordan array [1/sqrt(1-2x), x]. - Ralf Stephan, Feb 07 2014
|
|
REFERENCES
|
F. Bowman, Introduction to Bessel functions, Dover Publications Inc., New York 1958, see page 48. MR0097539
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 377. 9.7.1
|
|
LINKS
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
E.g.f. A(x) = y satisfies: (8*x^2 - x)*y'' + (16*x - 1)*y + 2*y = 0.
G.f. A(x) = y satisfies: 8*x^2*y'' + (16*x-1)*y + 2*y = 0.
E.g.f.: F(1/2, 1/2;1;8x) = 1/AGM(1, (1-8x)^(1/2)).
a(n) = (2*n)!^2/(n!^3 * 2^n).
O.g.f.: hypergeom([1/2, 1/2], [], 8*x). - Peter Luschny, Oct 08 2015
E.g.f.: 2*K(8*x)/Pi, where K() is the complete elliptic integral of the first kind. - Ilya Gutkovskiy, Nov 23 2017
D-finite with recurrence: n*a(n) -2*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Jan 23 2020
|
|
EXAMPLE
|
I_0(x)sqrt(2*Pi*x)/e^x ~ 1+2/(16x)+18/(16x)^2+300/(16x)^3+... where I_0(x) is a Bessel function
|
|
MAPLE
|
H := hypergeom([1/2, 1/2], [], 8*x):
seq(coeff(series(H, x, 20), x, n), n=0..16); # Peter Luschny, Oct 08 2015
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, (2*n)!^2/n!^3/2^n)
(PARI) a(n)=if(n<0, 0, n!*polcoeff(1/agm(1, sqrt(1-8*x+x*O(x^n))), n))
(Magma) [Factorial(2*n)^2/Factorial(n)^3/2^n: n in [0..20]]; // Vincenzo Librandi, Feb 08 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|