login
A370941
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + 2*log(1-x)) ).
2
1, 2, 18, 304, 7668, 259048, 11001968, 563728464, 33857839360, 2333472749376, 181558569560448, 15743501573763456, 1505641080366272640, 157445985444107880960, 17872580693502293022720, 2188829492626563123881472, 287673783237906407512565760
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)!) * Sum_{k=0..n} 2^k * (n+k)! * |Stirling1(n,k)|.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+2*log(1-x)))/x))
(PARI) a(n) = sum(k=0, n, 2^k*(n+k)!*abs(stirling(n, k, 1)))/(n+1)!;
CROSSREFS
Cf. A370938.
Sequence in context: A092563 A258922 A192555 * A375870 A350366 A370056
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 06 2024
STATUS
approved