login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370056
a(n) = 2*(4*n+1)!/(3*n+2)!.
4
1, 2, 18, 312, 8160, 287280, 12751200, 684028800, 43062243840, 3113350732800, 254265345734400, 23153103246873600, 2326025084653670400, 255579097716214272000, 30491180727539051520000, 3925248256199788277760000, 542357159056633603178496000
OFFSET
0,2
FORMULA
E.g.f.: exp( 1/2 * Sum_{k>=1} binomial(4*k,k) * x^k/k ).
a(n) = A000142(n) * A069271(n).
D-finite with recurrence 3*(3*n+2)*(3*n+1)*a(n) -8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Feb 22 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^(3/2))^2.
a(n) = 2 * Sum_{k=0..n} (3*n+2)^(k-1) * |Stirling1(n,k)|. (End)
PROG
(PARI) a(n) = 2*(4*n+1)!/(3*n+2)!;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 08 2024
STATUS
approved