The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326270 E.g.f.: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n!. 4
 1, 2, 18, 314, 8434, 314362, 15278642, 928696442, 68509258098, 5995762219514, 611538502747826, 71656036268121978, 9532232740451770866, 1425414297318661354746, 237588200534263288095538, 43821269448954050939558522, 8887255081413035850889914994, 1970841722610600810208914571258, 475544555000142351430865220032434, 124299766720856839788225909600114042, 35056463298676734373530025799446104818 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, the following sums are equal: Sum_{n>=0} (p + q^n)^n * r^n/n! = Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!; here, q = exp(x) with p = -1, r = 2. In general, let F(x) be a formal power series in x such that F(0)=1, then Sum_{n>=0} m^n * F(q^n*r)^b * log( F(q^n*r) )^n / n! = Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p); here, F(x) = exp(x), q = exp(x), p = -1, r = 2, m = 1. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA E.g.f.: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n!. E.g.f.: Sum_{n>=0} 2^n * exp(n^2*x) * exp( -2*exp(n*x) ) / n!. O.g.f.: Sum_{n>=0} 2^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x). a(n) = Sum_{k=0..n} 2^k * k^n * Stirling2(n,k). EXAMPLE E.g.f.: A(x) = 1 + 2*x + 18*x^2/2! + 314*x^3/3! + 8434*x^4/4! + 314362*x^5/5! + 15278642*x^6/6! + 928696442*x^7/7! + 68509258098*x^8/8! + 5995762219514*x^9/9! + 611538502747826*x^10/10! + ... such that A(x) = 1 + 2*(exp(x) - 1) + 2^2*(exp(2*x) - 1)^2/2! + 2^3*(exp(3*x) - 1)^3/3! + 2^4*(exp(4*x) - 1)^4/4! + 2^5*(exp(5*x) - 1)^5/5! + 2^6*(exp(6*x) - 1)^6/6! + ... also A(x) = exp(-2) + 2*exp(x)*exp(-2*exp(x)) + 2^2*exp(4*x)*exp(-2*exp(2*x))/2! + 2^3*exp(9*x)*exp(-2*exp(3*x))/3! + 2^4*exp(16*x)*exp(-2*exp(4*x))/4! + 2^5*exp(25*x)*exp(-2*exp(5*x))/5! + 2^6*exp(36*x)*exp(-2*exp(6*x))/6! + ... ORDINARY GENERATING FUNCTION. O.g.f.: B(x) = 1 + 2*x + 18*x^2 + 314*x^3 + 8434*x^4 + 314362*x^5 + 15278642*x^6 + 928696442*x^7 + 68509258098*x^8 + 5995762219514*x^9 + ... such that B(x) = 1 + 2*x/(1-x) + 2^2*2^2*x^2/((1-2*x)*(1-4*x)) + 2^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 2^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 2^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ... RELATED SERIES. Below we illustrate the following identity at specific values of x: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n!  =  Sum_{n>=0} 2^n * exp(n^2*x) * exp( -2*exp(n*x) ) / n!. (1) At x = -1, the following sums are equal S1 = Sum_{n>=0} (-2)^n * (1 - exp(-n))^n / n!, S1 = Sum_{n>=0} 2^n * exp(-n^2) * exp( -2*exp(-n) ) / n!, where S1 = 0.51596189603321982013621912500044621350106513780391377129738... (2) At x = -2, the following sums are equal S2 = Sum_{n>=0} (-2)^n * (1 - exp(-2*n))^n / n!, S2 = Sum_{n>=0} 2^n * exp(-2*n^2) * exp( -2*exp(-2*n) ) / n!, where S2 = 0.34246794778612083304129071190905516612972983097016819355092... (3) At x = -log(2), the following sums are equal S3 = Sum_{n>=0} 2^(-n*(n-1)) * (2^n - 1)^n * (-1)^n / n!, S3 = Sum_{n>=0} 2^(-n*(n-1)) * exp( -1/2^(n-1) ) / n!, where S3 = 0.58106816860114387883649557314841837351794236167582918403231... MATHEMATICA Flatten[{1, Table[Sum[2^k * k^n * StirlingS2[n, k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 09 2019 *) PROG (PARI) {a(n) = sum(k=0, n, 2^k * k^n * stirling(n, k, 2) )} for(n=0, 30, print1(a(n), ", ")) (PARI) /* E.g.f.: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n! */ {a(n) = n! * polcoeff(sum(m=0, n, 2^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) /* O.g.f.: Sum_{n>=0} 2^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */ {a(n) = polcoeff(sum(m=0, n, 2^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A108459, A326271, A326288. Sequence in context: A192555 A179497 A296837 * A227325 A087215 A229490 Adjacent sequences:  A326267 A326268 A326269 * A326271 A326272 A326273 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 28 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 01:30 EST 2021. Contains 349617 sequences. (Running on oeis4.)