login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326269 G.f.: Sum_{n>=0} (1+x + x^n)^n * x^n. 1
1, 1, 3, 3, 7, 10, 17, 27, 41, 70, 109, 168, 276, 439, 688, 1099, 1774, 2820, 4488, 7219, 11596, 18574, 29844, 48040, 77302, 124515, 200756, 323695, 522168, 843020, 1361409, 2198679, 3552094, 5740668, 9279009, 14999925, 24252057, 39216310, 63419775, 102569373, 165898349, 268344639, 434076911, 702197193, 1135967897, 1837747824, 2973155053, 4810149922, 7782281092, 12591037633, 20371441356 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally, the following sums are equal:

(1) Sum_{n>=0} binomial(n+k-1, n) * (p + q^n)^n * r^n,

(2) Sum_{n>=0} binomial(n+k-1, n) * q^(n^2) * r^n / (1 - p*q^n*r)^(n+k),

for any fixed integer k; this sequence results when k=1, p = 1+x, q = x, r = x.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: Sum_{n>=0} (1+x + x^n)^n * x^n.

G.f.: Sum_{n>=0} x^(n*(n+1)) / (1 - x^(n+1) - x^(n+2))^(n+1).

a(n) ~ (5 + sqrt(5))/10 * Phi^n, where Phi = (1 + sqrt(5))/2.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 27*x^7 + 41*x^8 + 70*x^9 + 109*x^10 + 168*x^11 + 276*x^12 + 439*x^13 + 688*x^14 + 1099*x^15 + ...

such that

A(x) = 1 + (1+2*x)*x + (1+x+x^2)^2*x^2 + (1+x+x^3)^3*x^3 + (1+x+x^4)^4*x^4 + (1+x+x^5)^5*x^5 + (1+x+x^6)^6*x^6 + (1+x+x^7)^7*x^7 + (1+x+x^8)^8*x^8 + ...

also

A(x) = 1/(1-x-x^2) + x^2/(1-x^2-x^3)^2 + x^6/(1-x^3-x^4)^3 + x^12/(1-x^4-x^5)^4 + x^20/(1-x^5-x^6)^5 + x^30/(1-x^6-x^7)^6 + x^42/(1-x^7-x^8)^7 + ...

PROG

(PARI) {a(n) = my(A = sum(m=0, n, (1+x + x^m +x*O(x^n))^m * x^m ) ); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

(PARI) {a(n) = my(A = sum(m=0, sqrtint(n+1), x^(m*(m+1)) / (1 - x^(m+1) - x^(m+2) +x*O(x^n) )^(m+1) ) ); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

CROSSREFS

Sequence in context: A157933 A013915 A136445 * A052989 A252750 A287274

Adjacent sequences:  A326266 A326267 A326268 * A326270 A326271 A326272

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 05:01 EST 2021. Contains 349437 sequences. (Running on oeis4.)