login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326269
G.f.: Sum_{n>=0} (1+x + x^n)^n * x^n.
1
1, 1, 3, 3, 7, 10, 17, 27, 41, 70, 109, 168, 276, 439, 688, 1099, 1774, 2820, 4488, 7219, 11596, 18574, 29844, 48040, 77302, 124515, 200756, 323695, 522168, 843020, 1361409, 2198679, 3552094, 5740668, 9279009, 14999925, 24252057, 39216310, 63419775, 102569373, 165898349, 268344639, 434076911, 702197193, 1135967897, 1837747824, 2973155053, 4810149922, 7782281092, 12591037633, 20371441356
OFFSET
0,3
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * (p + q^n)^n * r^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * q^(n^2) * r^n / (1 - p*q^n*r)^(n+k),
for any fixed integer k; this sequence results when k=1, p = 1+x, q = x, r = x.
LINKS
FORMULA
G.f.: Sum_{n>=0} (1+x + x^n)^n * x^n.
G.f.: Sum_{n>=0} x^(n*(n+1)) / (1 - x^(n+1) - x^(n+2))^(n+1).
a(n) ~ (5 + sqrt(5))/10 * Phi^n, where Phi = (1 + sqrt(5))/2.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 27*x^7 + 41*x^8 + 70*x^9 + 109*x^10 + 168*x^11 + 276*x^12 + 439*x^13 + 688*x^14 + 1099*x^15 + ...
such that
A(x) = 1 + (1+2*x)*x + (1+x+x^2)^2*x^2 + (1+x+x^3)^3*x^3 + (1+x+x^4)^4*x^4 + (1+x+x^5)^5*x^5 + (1+x+x^6)^6*x^6 + (1+x+x^7)^7*x^7 + (1+x+x^8)^8*x^8 + ...
also
A(x) = 1/(1-x-x^2) + x^2/(1-x^2-x^3)^2 + x^6/(1-x^3-x^4)^3 + x^12/(1-x^4-x^5)^4 + x^20/(1-x^5-x^6)^5 + x^30/(1-x^6-x^7)^6 + x^42/(1-x^7-x^8)^7 + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, (1+x + x^m +x*O(x^n))^m * x^m ) ); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, sqrtint(n+1), x^(m*(m+1)) / (1 - x^(m+1) - x^(m+2) +x*O(x^n) )^(m+1) ) ); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Sequence in context: A350394 A013915 A136445 * A052989 A358823 A252750
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 02 2019
STATUS
approved