login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326267
E.g.f.: Sum_{n>=0} (W(x)^n - 1)^n * x^n / n!, where W(x) = exp(x*W(x)) = LambertW(-x)/(-x).
2
1, 0, 2, 9, 112, 1585, 28776, 637189, 16725136, 510567201, 17872335280, 709140147661, 31587858029256, 1566848912178433, 85946841477148120, 5181755738815497885, 341518373893520290336, 24487048531932288330049, 1901736820850206799775456, 159346732413596476282342669, 14353534016946934243615057240, 1385413661318328442225223922081
OFFSET
0,3
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = LambertW(-x)/(-x) with p = -1, r = x.
FORMULA
Let W(x) = LambertW(-x)/(-x), then e.g.f. A(x) equals the following sums.
(1) Sum_{n>=0} (W(x)^n - 1)^n * x^n / n!.
(2) Sum_{n>=0} W(x)^(n^2) * exp( -W(x)^n * x ) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x^2/2! + 9*x^3/3! + 112*x^4/4! + 1585*x^5/5! + 28776*x^6/6! + 637189*x^7/7! + 16725136*x^8/8! + 510567201*x^9/9! + 17872335280*x^10/10! + ...
such that
A(x) = 1 + (W(x) - 1)*x + (W(x)^2 - 1)^2*x^2/2! + (W(x)^3 - 1)^3*x^3/3! + (W(x)^4 - 1)^4*x^4/4! + (W(x)^5 - 1)^5*x^5/5! + (W(x)^6 - 1)^6*x^6/6! + (W(x)^7 - 1)^7*x^7/7! + (W(x)^8 - 1)^8*x^8/8! + ...
also
A(x) = exp(-x) + W(x)*exp(-W(x)*x)*x + W(x)^4*exp(-W(x)^2*x)*x^2/2! + W(x)^9*exp(-W(x)^3*x)*x^3/3! + W(x)^16*exp(-W(x)^4*x)*x^4/4! + W(x)^25*exp(-W(x)^5*x)*x^5/5! + W(x)^36*exp(-W(x)^6*x)*x^6/6! + ...
where W(x) = exp(x*W(x)) = LambertW(-x)/(-x) begins
W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! + ... + (n+1)^(n-1)*x^n/n! + ...
RELATED SERIES.
Note that W(x)^n equals
W(x)^n = Sum_{k>=0} n * (n + k)^(k-1) * x^k/k!
and so
W(x)^(n^2) = Sum_{k>=0} n^2 * (n^2 + k)^(k-1) * x^k/k!.
PROG
(PARI) /* E.g.f.: Sum_{n>=0} (W(x)^n - 1)^n * x^n / n! */
{a(n) = my(W = 1/x*serreverse(x*exp(-x +x*O(x^n))));
n! * polcoeff( sum(m=0, n, (W^m - 1)^m * x^m / m!), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* E.g.f.: Sum_{n>=0} W(x)^(n^2) * exp( -W(x)^n * x ) / n! */
{a(n) = my(W = 1/x*serreverse(x*exp(-x +x*O(x^n))));
n! * polcoeff( sum(m=0, n, W^(m^2) * exp(-W^m*x +x*O(x^n)) * x^m / m!), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A062498 A339015 A305005 * A337043 A008269 A039718
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2019
STATUS
approved