OFFSET
0,3
FORMULA
a(n) = [x^n] (1/(1 + x)) * Sum_{k>=0} (x/(1 + x))^k / Product_{j=1..k} (1 - n*j*x/(1 + x)).
a(n) = n! * [x^n] exp((exp(n*x) - 1) / n - x), for n > 0.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * n^k * BellPolynomial_k(1/n), for n > 0.
MATHEMATICA
Table[SeriesCoefficient[1/(1 + x) Sum[(x/(1 + x))^k/Product[(1 - n j x/(1 + x)), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n - x], {x, 0, n}], {n, 1, 18}]]
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] n^k BellB[k, 1/n], {k, 0, n}], {n, 1, 18}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 12 2020
STATUS
approved