The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334162 a(0) = 1; thereafter a(n) = exp(-1/n) * Sum_{k>=0} (n*k + 1)^n / (n^k * k!). 4
 1, 2, 6, 35, 352, 5307, 111592, 3117900, 111259904, 4912490375, 261954304224, 16560019685937, 1222893826048000, 104189533522270666, 10132262911996769408, 1114216450970154278543, 137427598621356912082944, 18877351974681584403701519, 2869969478954093766868948480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33. FORMULA a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (x/(1 - x))^k / Product_{j=1..k} (1 - n*j*x/(1 - x)). a(n) = n! * [x^n] exp(x + (exp(n*x) - 1) / n), for n > 0. a(n) = A334165(n,n). MATHEMATICA Table[SeriesCoefficient[1/(1 - x) Sum[(x/(1 - x))^k/Product[(1 - n j x/(1 - x)), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 18}] Join[{1}, Table[n! SeriesCoefficient[Exp[x + (Exp[n x] - 1)/n], {x, 0, n}], {n, 1, 18}]] CROSSREFS Cf. A000110, A007405, A003575, A003576, A003577, A003578, A003579, A003580, A003581, A003582, A301419, A334165. Sequence in context: A326090 A197973 A107868 * A173399 A193190 A247209 Adjacent sequences: A334159 A334160 A334161 * A334163 A334164 A334165 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 18:02 EST 2022. Contains 358563 sequences. (Running on oeis4.)