login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301419
a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 - n*j*x).
7
1, 1, 3, 19, 201, 3176, 69823, 2026249, 74565473, 3376695763, 183991725451, 11854772145800, 890415496931689, 77023751991841669, 7592990698770559111, 845240026276785888451, 105409073489605774592897, 14625467507717709778793020, 2244123413703647502288608467, 378751257186051653931253015229
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = n! * [x^n] exp((exp(n*x) - 1)/n), for n > 0.
a(n) = Sum_{k=0..n} n^(n-k)*Stirling2(n,k).
a(n) = n^n * BellPolynomial(n, 1/n) for n >= 1. - Peter Luschny, Dec 22 2021
a(n) ~ exp(n/LambertW(n^2) - n) * n^(2*n) / (sqrt(1 + LambertW(n^2)) * LambertW(n^2)^n). - Vaclav Kotesovec, Jun 06 2022
MATHEMATICA
Table[SeriesCoefficient[Sum[x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n], {x, 0, n}], {n, 19}]]
Join[{1}, Table[Sum[n^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 19}]]
(* Or: *)
A301419[n_] := If[n == 0, 1, n^n BellB[n, 1/n]];
Table[A301419[n], {n, 0, 19}] (* Peter Luschny, Dec 22 2021 *)
PROG
(GAP) List([0..20], n->Sum([0..n], k->n^(n-k)*Stirling2(n, k))); # Muniru A Asiru, Mar 20 2018
(PARI) a(n) = sum(k=0, n, n^(n-k)*stirling(n, k, 2)); \\ Michel Marcus, Mar 23 2018
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 20 2018
STATUS
approved