OFFSET
0,3
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..101
N. J. A. Sloane, Transforms
FORMULA
a(n) = n! * [x^n] exp((exp(n*x) - 1)/n), for n > 0.
a(n) = Sum_{k=0..n} n^(n-k)*Stirling2(n,k).
a(n) = n^n * BellPolynomial(n, 1/n) for n >= 1. - Peter Luschny, Dec 22 2021
a(n) ~ exp(n/LambertW(n^2) - n) * n^(2*n) / (sqrt(1 + LambertW(n^2)) * LambertW(n^2)^n). - Vaclav Kotesovec, Jun 06 2022
MATHEMATICA
Table[SeriesCoefficient[Sum[x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n], {x, 0, n}], {n, 19}]]
Join[{1}, Table[Sum[n^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 19}]]
(* Or: *)
A301419[n_] := If[n == 0, 1, n^n BellB[n, 1/n]];
Table[A301419[n], {n, 0, 19}] (* Peter Luschny, Dec 22 2021 *)
PROG
(GAP) List([0..20], n->Sum([0..n], k->n^(n-k)*Stirling2(n, k))); # Muniru A Asiru, Mar 20 2018
(PARI) a(n) = sum(k=0, n, n^(n-k)*stirling(n, k, 2)); \\ Michel Marcus, Mar 23 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 20 2018
STATUS
approved