login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075506
Shifts one place left under 7th-order binomial transform.
7
1, 1, 8, 71, 729, 8842, 125399, 2026249, 36458010, 719866701, 15453821461, 358100141148, 8899677678109, 235877034446341, 6634976621814472, 197269776623577659, 6177654735731310917, 203136983117907790890, 6994626418539177737803, 251584328242318030774781
OFFSET
0,3
COMMENTS
Previous name was: Row sums of triangle A075502 (for n>=1).
LINKS
FORMULA
a(n) = sum((7^(n-m))*S2(n,m), m=0..n), with S2(n,m) = A008277(n,m) (Stirling2).
E.g.f.: exp((exp(7*x)-1)/7).
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 7*j*x). - Ilya Gutkovskiy, Mar 20 2018
a(n) ~ 7^n * n^n * exp(n/LambertW(7*n) - 1/7 - n) / (sqrt(1 + LambertW(7*n)) * LambertW(7*n)^n). - Vaclav Kotesovec, Jul 15 2021
MAPLE
[seq(factorial(k)*coeftayl(exp((exp(7*x)-1)/7), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
MATHEMATICA
Table[7^n BellB[n, 1/7], {n, 0, 20}]
PROG
(GAP) List([0..20], n->Sum([0..n], m->7^(n-m)*Stirling2(n, m))); # Muniru A Asiru, Mar 20 2018
CROSSREFS
Shifts one place left under k-th order binomial transform, k=1..10: A000110, A004211, A004212, A004213, A005011, A005012, A075506, A075507, A075508, A075509.
Sequence in context: A096341 A199687 A225033 * A334670 A094911 A294166
KEYWORD
nonn,easy,eigen
AUTHOR
Wolfdieter Lang, Oct 02 2002
EXTENSIONS
a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015
STATUS
approved