The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075506 Shifts one place left under 7th-order binomial transform. 6
 1, 1, 8, 71, 729, 8842, 125399, 2026249, 36458010, 719866701, 15453821461, 358100141148, 8899677678109, 235877034446341, 6634976621814472, 197269776623577659, 6177654735731310917, 203136983117907790890, 6994626418539177737803, 251584328242318030774781 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Previous name was: Row sums of triangle A075502 (for n>=1). LINKS Muniru A Asiru, Table of n, a(n) for n = 0..110 FORMULA a(n) = sum((7^(n-m))*S2(n,m), m=0..n), with S2(n,m) = A008277(n,m) (Stirling2). E.g.f.: exp((exp(7*x)-1)/7). O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 7*j*x). - Ilya Gutkovskiy, Mar 20 2018 a(n) ~ 7^n * n^n * exp(n/LambertW(7*n) - 1/7 - n) / (sqrt(1 + LambertW(7*n)) * LambertW(7*n)^n). - Vaclav Kotesovec, Jul 15 2021 MAPLE [seq(factorial(k)*coeftayl(exp((exp(7*x)-1)/7), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018 MATHEMATICA Table[7^n BellB[n, 1/7], {n, 0, 20}] PROG (GAP) List([0..20], n->Sum([0..n], m->7^(n-m)*Stirling2(n, m))); # Muniru A Asiru, Mar 20 2018 CROSSREFS Shifts one place left under k-th order binomial transform, k=1..10: A000110, A004211, A004212, A004213, A005011, A005012, A075506, A075507, A075508, A075509. Sequence in context: A096341 A199687 A225033 * A334670 A094911 A294166 Adjacent sequences:  A075503 A075504 A075505 * A075507 A075508 A075509 KEYWORD nonn,easy,eigen AUTHOR Wolfdieter Lang, Oct 02 2002 EXTENSIONS a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 11:01 EDT 2021. Contains 347518 sequences. (Running on oeis4.)