login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075505
Stirling2 triangle with scaled diagonals (powers of 10).
4
1, 10, 1, 100, 30, 1, 1000, 700, 60, 1, 10000, 15000, 2500, 100, 1, 100000, 310000, 90000, 6500, 150, 1, 1000000, 6300000, 3010000, 350000, 14000, 210, 1, 10000000, 127000000, 96600000, 17010000, 1050000, 26600, 280, 1
OFFSET
1,2
COMMENTS
This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(10*z) - 1)*x/10) - 1.
LINKS
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
FORMULA
a(n, m) = (10^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*10)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 10m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m} (1-10k*x), m >= 1.
E.g.f. for m-th column: (((exp(10x)-1)/10)^m)/m!, m >= 1.
EXAMPLE
[1]; [10,1]; [100,30,1]; ...; p(3,x) = x(100 + 30*x + x^2).
From Andrew Howroyd, Mar 25 2017: (Start)
Triangle starts
* 1
* 10 1
* 100 30 1
* 1000 700 60 1
* 10000 15000 2500 100 1
* 100000 310000 90000 6500 150 1
* 1000000 6300000 3010000 350000 14000 210 1
* 10000000 127000000 96600000 17010000 1050000 26600 280 1
(End)
MATHEMATICA
Flatten[Table[10^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
PROG
(PARI) for(n=1, 11, for(m=1, n, print1(10^(n - m) * stirling(n, m, 2), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Row sums are A075509.
Cf. A075504.
Sequence in context: A165293 A038303 A178870 * A130310 A333685 A288050
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 02 2002
STATUS
approved