OFFSET
0,2
REFERENCES
Richard A. Dunlap, The Golden Ratio and Fibonacci Numbers, Singapore, World Scientific, 1997, pp. 73-77.
Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège, Vol. 41 (1972), pp. 179-182.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..10000
Ron Knott, Using Powers of Phi to represent Integers.
EXAMPLE
a(9) = 10001 because 7 + 2 = 9.
a(10) is 10100 because 7 + 3 = 10.
MATHEMATICA
a[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; FromDigits @ IntegerDigits[Total[2^s], 2]]; Array[a, 30, 0] (* Amiram Eldar, Feb 17 2022 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Casey Mongoven, May 21 2007
EXTENSIONS
Definition corrected by Casey Mongoven, May 29 2010
a(0) and more terms from Amiram Eldar, Feb 17 2022
STATUS
approved