login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333685
Triangle T(n,k), n>=0, 0 <= k <= n, read by rows, where T(n,k) is the number of self-avoiding paths in (2*n+1) X (2*k+1) grid starting the upper left corner, passing through the center of grid and finishing the lower right corner.
4
1, 1, 10, 1, 101, 7056, 1, 1105, 610765, 462755440, 1, 12046, 53968755, 365962179700, 2593165016903538, 1, 131399, 4775133828, 294346514811753, 18855848354902159112, 1243982213040307428318660
OFFSET
0,3
FORMULA
T(n,k) = T(k,n).
EXAMPLE
Triangle starts:
====================================================================
n\k| 0 1 2 3 4
---|----------------------------------------------------------------
0 | 1;
1 | 1, 10;
2 | 1, 101, 7056;
3 | 1, 1105, 610765, 462755440;
4 | 1, 12046, 53968755, 365962179700, 2593165016903538;
5 | 1, 131399, 4775133828, 294346514811753, ...
6 | 1, 1433341, 422813081886, 237970057189444731, ...
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333685(n, k):
if n == 0 or k == 0: return 1
universe = tl.grid(2 * n, 2 * k)
GraphSet.set_universe(universe)
start, goal = 1, (2 * n + 1) * (2 * k + 1)
paths = GraphSet.paths(start, goal).including((start + goal) // 2)
return paths.len()
print([A333685(n, k) for n in range(6) for k in range(n + 1)])
CROSSREFS
Columns k=0..2 give A000012, A333686, A333689.
T(n,n) gives A121787.
Sequence in context: A178870 A075505 A130310 * A288050 A288503 A051523
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Apr 02 2020
STATUS
approved