login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038303 Triangle whose (i,j)-th entry is binomial(i,j)*10^(i-j)*1^j. 7
1, 10, 1, 100, 20, 1, 1000, 300, 30, 1, 10000, 4000, 600, 40, 1, 100000, 50000, 10000, 1000, 50, 1, 1000000, 600000, 150000, 20000, 1500, 60, 1, 10000000, 7000000, 2100000, 350000, 35000, 2100, 70, 1, 100000000, 80000000, 28000000 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

T(i,j) is the number of i-permutations of 11 objects a,b,c,d,e,f,g,h,i,j,k, with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007

Triangle T(n,k), read by rows, given by [10,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009

Triangle of coefficients in expansion of (10 + x)^n, where n is a nonnegative integer. - Zagros Lalo, Jul 21 2018

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48

LINKS

Muniru A Asiru, Rows n=0..50 of triangle, flattened

B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

FORMULA

Sum_{k=0..n} T(n,k)*x^k = (10+x)^n. - Philippe Deléham, Dec 15 2009

G.f.: -1/(-1+10*x+x*y). - R. J. Mathar, Aug 11 2015

T(0,0) = 1; T(n,k) = 10 T(n-1,k) + T(n-1,k-1) for k = 0...n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018

EXAMPLE

1

10, 1

100, 20, 1

1000, 300, 30, 1

10000, 4000, 600, 40, 1

100000, 50000, 10000, 1000, 50, 1

1000000, 600000, 150000, 20000, 1500, 60, 1

10000000, 7000000, 2100000, 350000, 35000, 2100, 70, 1

100000000, 80000000, 28000000, 5600000, 700000, 56000, 2800, 80, 1

MAPLE

for i from 0 to 8 do seq(binomial(i, j)*10^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007

MATHEMATICA

t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 10 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *)

Table[CoefficientList[ Expand[(10 + x)^n], x], {n, 0, 8}] // Flatten  (* Zagros Lalo, Jul 22 2018 *)

Table[CoefficientList[Binomial[i, j] * 10^(i - j) * 1^j, x], {i, 0, 8}, {j, 0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)

PROG

(GAP) Flat(List([0..8], i->List([0..i], j->Binomial(i, j)*10^(i-j)*1^j))); # Muniru A Asiru, Jul 21 2018

CROSSREFS

Cf. A317054, A317055.

Sequence in context: A164881 A276379 A165293 * A178870 A075505 A130310

Adjacent sequences:  A038300 A038301 A038302 * A038304 A038305 A038306

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 00:50 EDT 2018. Contains 316252 sequences. (Running on oeis4.)