login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165293
Inverse of A038303, and generalization of A130595.
4
1, 10, -1, 100, -20, 1, 1000, -300, 30, -1, 10000, -4000, 600, -40, 1, 100000, -50000, 10000, -1000, 50, -1, 1000000, -600000, 150000, -20000, 1500, -60, 1, 10000000, -7000000, 2100000, -350000, 35000, -2100, 70
OFFSET
1,2
COMMENTS
Rows sum up to A001019 (powers of 9), diagonals to A004189, a generalization of A010892 (the inverse Fibonacci). Ratio of diagonal sums converges to a decimal sequence: A000108 (Catalan numbers), which is the squared difference of sqrt(2) and sqrt(3), or 5-sqrt(24). Ratio between first binomial transform (A054320 and A138288)of A004189, converges to sqrt(2/3). 1/(2*sqrt(24)) gives A000984 (central binomial coefficients) as a decimal sequence.
Triangle T(n,k), read by rows, given by [10,0,0,0,0,0,0,0,...] DELTA [ -1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009
FORMULA
Sum_{k=0..n} T(n,k)*x^k = (10-x)^n. - Philippe Deléham, Dec 15 2009
G.f.: x*y/(1-10*x+x*y). - R. J. Mathar, Aug 11 2015
EXAMPLE
Triangle begins:
1;
10, -1;
100, -20, 1;
1000, -300, 30, -1;
10000, -4000, 600, -40, 1;
KEYWORD
tabl,sign
AUTHOR
Mark Dols, Sep 13 2009
STATUS
approved