login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075507 Shifts one place left under 8th-order binomial transform. 6
1, 1, 9, 89, 1009, 13457, 210105, 3747753, 74565473, 1628999841, 38704241897, 993034281593, 27340167242321, 803154583649329, 25050853217628313, 826165199464341705, 28707262835597618369, 1047731789671001235265, 40053733152627299592137, 1599910554128824794493593 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Previous name was: Row sums of triangle A075503 (for n>=1).

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..110

FORMULA

a(n) = Sum_{m=0..n} 8^(n-m)*S2(n,m), with S2(n,m) = A008277(n,m) (Stirling2).

E.g.f.: exp((exp(8*x)-1)/8).

O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 8*j*x). - Ilya Gutkovskiy, Mar 20 2018

a(n) ~ 8^n * n^n * exp(n/LambertW(8*n) - 1/8 - n) / (sqrt(1 + LambertW(8*n)) * LambertW(8*n)^n). - Vaclav Kotesovec, Jul 15 2021

MAPLE

[seq(factorial(k)*coeftayl(exp((exp(8*x)-1)/8), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018

MATHEMATICA

Table[8^n BellB[n, 1/8], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)

PROG

(GAP) List([0..20], n->Sum([0..n], m->8^(n-m)*Stirling2(n, m))); # Muniru A Asiru, Mar 20 2018

CROSSREFS

Shifts one place left under k-th order binomial transform, k=1..10: A000110, A004211, A004212, A004213, A005011, A005012, A075506, A075507, A075508, A075509.

Sequence in context: A199759 A069573 A101679 * A094935 A258388 A296618

Adjacent sequences:  A075504 A075505 A075506 * A075508 A075509 A075510

KEYWORD

nonn,easy,eigen

AUTHOR

Wolfdieter Lang, Oct 02 2002

EXTENSIONS

a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 22:36 EDT 2021. Contains 346408 sequences. (Running on oeis4.)