OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..250
FORMULA
a(n) = Sum_{k = 0..n} A094816(n, k)*7^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+6)!/6!.
a(n) = 2F0(7,-n;;-1). - Benedict W. J. Irwin, May 27 2016
From Peter Bala, Jul 26 2021: (Start)
a(n) = (n+7)*a(n-1) - (n-1)*a(n-2) with a(0) = 1 and a(1) = 8.
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^6 + 15*n^5 + 100*n^4 + 355*n^3 + 694*n^2 + 689*n + 265 = A094795(n).
(End)
MATHEMATICA
Table[HypergeometricPFQ[{7, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
With[{nn = 250}, CoefficientList[Series[Exp[x]/(1 - x)^7, {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 27 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Jun 28 2004
STATUS
approved