login
A096343
Number of 1's in binary expansion(product of nonzero digits(n^n)).
0
1, 1, 3, 4, 4, 4, 4, 6, 6, 1, 6, 5, 10, 5, 16, 14, 12, 17, 22, 4, 9, 21, 21, 22, 18, 25, 22, 21, 15, 4, 27, 28, 29, 23, 32, 34, 39, 38, 52, 13, 45, 56, 50, 53, 27, 50, 44, 48, 47, 18, 48, 62, 42, 47, 48, 44, 57, 67, 58, 31, 71, 66, 63, 57, 71, 67, 56, 74, 70, 42, 100, 89, 72, 60, 75
OFFSET
0,3
COMMENTS
Conjecture: a(n) = a(n+1) for infinitely many positive integers. Largest found is n=1091, i.e. n1b(pnd(1091^1091)) = n1b(pnd(1092^1092)) = 1892.
MATHEMATICA
Table[Count[IntegerDigits[Times@@DeleteCases[IntegerDigits[n^n], 0], 2], 1], {n, 80}] (* Harvey P. Dale, Mar 08 2017 *)
CROSSREFS
Sequence in context: A064042 A332325 A194882 * A351911 A069812 A179842
KEYWORD
base,easy,nonn
AUTHOR
Jason Earls, Jun 29 2004
STATUS
approved