The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095000 E.g.f.: exp(x)/(1-x)^4. 13
 1, 5, 29, 193, 1457, 12341, 116125, 1203329, 13627073, 167525317, 2222710781, 31665408545, 482196718129, 7817359305653, 134443910166077, 2444991262876321, 46883166605035265, 945426638499719429, 20002372214708227933, 443036881445294292737, 10252840082607606694961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sum_{k=0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n) for x = 1, 2, 3 respectively. From Peter Bala, Jul 10 2008: (Start) Recurrence relation: a(0) = 1, a(1) = 5, a(n) = (n+4)*a(n-1) - (n-1)*a(n-2) for n >= 2. Let p_3(n) = n^3+2*n-1 = n^(3)-3*n^(2)+3*n^(1)-1, where n^(k) denotes the rising factorial n*(n+1)*...*(n+k-1). The polynomial p_3(n) is an example of a Poisson-Charlier polynomial c_k(x;a) at k = 3, x = -n and a = -1. The sequence b(n) := n!*p_3(n+1) = A001565(n) satisfies the same recurrence as a(n) but with the initial conditions b(0) = 2, b(1) = 11. This leads to the finite continued fraction expansion a(n)/b(n) = 1/(2+1/(5-1/(6-2/(7-...-(n-1)/(n+4))))). Lim_{n -> infinity} a(n)/b(n) = e/6 = 1/(2+1/(5-1/(6-2/(7-...-n/((n+5)-...))))). a(n) = -b(n) * Sum_{k = 0..n} 1/(k!*p_3(k)*p_3(k+1)) - since the rhs satisfies the above recurrence with the same initial conditions. Hence e = -6 * Sum_{k>=0} 1/(k!*p_3(k)*p_3(k+1)). For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A082030 (r=2) and A095177 (r=4). {a(n)} is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences. (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Eric Weisstein's World of Mathematics, Poisson-Charlier polynomial FORMULA a(n) = Sum_{k=0..n} A094816(n, k)*4^k. a(n) = Sum_{k=0..n} binomial(n, k)*(k+3)!/6. a(n) ~ n!*n^3*e/6. - Vaclav Kotesovec, Oct 14 2012 a(n) = hypergeom([4, -n], [], -1). - Peter Luschny, Sep 20 2014 First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) - 1 with a(0) = 1, where P(n) = n^3 + 3*n^2 + 5*n + 2 = A001565(n). - Peter Bala, Jul 26 2021 D-finite with recurrence a(n) +(-n-4)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Aug 01 2022 MAPLE a := n -> hypergeom([4, -n], [], -1); seq(round(evalf(a(n), 100)), n=0..18); # Peter Luschny, Sep 20 2014 MATHEMATICA Table[n!*SeriesCoefficient[E^(x)/(1-x)^4, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *) PROG (PARI) x='x+O('x^66); Vec(serlaplace(exp(x)/(1-x)^4)) \\ Joerg Arndt, May 11 2013 CROSSREFS Cf. A000522, A001339, A082030, A095177, A096307, A096341, A001565. Sequence in context: A258314 A225030 A188143 * A086672 A324962 A306932 Adjacent sequences: A094997 A094998 A094999 * A095001 A095002 A095003 KEYWORD nonn AUTHOR Philippe Deléham, Jun 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)