login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095002
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3); given a(1) = 1, a(2) = 3, a(3) = 19.
3
1, 3, 19, 145, 1137, 8947, 70435, 554529, 4365793, 34371811, 270608691, 2130497713, 16773373009, 132056486355, 1039678517827, 8185371656257, 64443294732225, 507360986201539, 3994444594880083, 31448195772839121, 247591121587832881, 1949280776929823923
OFFSET
1,2
COMMENTS
A companion to A095003, A005004; a(n)/a(n-1) tending to 4 + sqrt(15).
a(n)/a(n-1) tends to C = 4 + sqrt(15); C having the property that C + 1/C = 8. Eigenvalues of M (1, C, 1/C) are roots to x^3 - 9x^2 + 9x - 1.
FORMULA
Let M be the 3 X 3 matrix [1 1 1 / 1 2 3 / 1 3 6]. M^n * [1 0 0] = [a(n) A095003(n) A095004(n)].
From R. J. Mathar, Aug 22 2008: (Start)
O.g.f.: x*(1-6x+x^2)/((1-x)*(1-8x+x^2)).
a(n) = (2 + A001090(n+1) - 7*A001090(n))/3. (End)
EXAMPLE
a(4) = 145 = 9*19 - 9*3 + 1.
a(4) = 145, leftmost term in M^4 * [1 0 0] = [145 352 640].
MAPLE
a:= n-> (<<1|1|1>, <1|2|3>, <1|3|6>>^n)[1$2]:
seq(a(n), n=1..23); # Alois P. Heinz, Jun 06 2021
MATHEMATICA
a[n_] := (MatrixPower[{{1, 1, 1}, {1, 2, 3}, {1, 3, 6}}, n].{{1}, {0},
{0}})[[1, 1]]; Table[ a[n], {n, 20}]; (* Robert G. Wilson v, May 29 2004 *)
nxt[{a_, b_, c_}]:={b, c, 9c-9b+a}; NestList[nxt, {1, 3, 19}, 30][[All, 1]] (* Harvey P. Dale, Sep 02 2022 *)
PROG
(PARI) Vec(x*(1-6*x+x^2)/((1-x)*(1-8*x+x^2)) + O(x^20)) \\ Michel Marcus, Mar 21 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 27 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 29 2004
Edited by Georg Fischer, Jun 06 2021
STATUS
approved