login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A095004
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3); given a(1) = 1, a(2) = 10, a(3) = 81.
4
1, 10, 81, 640, 5041, 39690, 312481, 2460160, 19368801, 152490250, 1200553201, 9451935360, 74414929681, 585867502090, 4612525087041, 36314333194240, 285902140466881, 2250902790540810, 17721320183859601, 139519658680336000, 1098435949258828401, 8647967935390291210
OFFSET
1,2
COMMENTS
A sequence derived from A076765, with a(n)/a(n-1) tending to 4 + sqrt(15).
a(n)/a(n-1) tends to C = 4 + sqrt(15) = 7.87298334... (C having the property that C + 1/C = 8). Eigenvalues of M (1, C, 1/C) are roots to x^3 - 9x^2 + 9x - 1.
This is the r=10 member of the r-family of sequences S_r(n), n>=1, defined in A092184, where more information can be found.
LINKS
FORMULA
a(n) = A076765(n-1) + A076765(n-2).
Let M be the 3 X 3 matrix [1 1 1 / 1 2 3 / 1 3 6]; then M^n * [1 0 0] = [A095002(n) A095003(n) a(n)].
a(n)= (T(n, 4)-1)/3 with Chebyshev's polynomials of the first kind evaluated at x=4: T(n, 4)=A001091(n). a(0):=0. - Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1-x)*(1-8*x+x^2)) = x*(1+x)/(1-9*x+9*x^2-x^3).
EXAMPLE
a(4) = 640 = 568 + 72 = A076765(3) + A076765(2).
a(4) = 640 = 9*81 - 9*10 + 1.
a(4) = 640, rightmost term in M^4 * [1 0 0]: [145 352 640] = [A095002(4) A095003(4) A095004(4)].
MAPLE
a:= n-> (<<1|1|1>, <1|2|3>, <1|3|6>>^n)[1, 3]:
seq(a(n), n=1..23); # Alois P. Heinz, Jun 06 2021
MATHEMATICA
a[n_] := (MatrixPower[{{1, 1, 1}, {1, 2, 3}, {1, 3, 6}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 20}]; (* Robert G. Wilson v, May 29 2004 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 27 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 29 2004
Definition aligned with A095002, A095003 by Georg Fischer, Jun 06 2021
STATUS
approved