OFFSET
1,2
COMMENTS
A sequence derived from A076765, with a(n)/a(n-1) tending to 4 + sqrt(15).
a(n)/a(n-1) tends to C = 4 + sqrt(15) = 7.87298334... (C having the property that C + 1/C = 8). Eigenvalues of M (1, C, 1/C) are roots to x^3 - 9x^2 + 9x - 1.
This is the r=10 member of the r-family of sequences S_r(n), n>=1, defined in A092184, where more information can be found.
LINKS
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
Index entries for linear recurrences with constant coefficients, signature (9,-9,1).
FORMULA
Let M be the 3 X 3 matrix [1 1 1 / 1 2 3 / 1 3 6]; then M^n * [1 0 0] = [A095002(n) A095003(n) a(n)].
a(n)= (T(n, 4)-1)/3 with Chebyshev's polynomials of the first kind evaluated at x=4: T(n, 4)=A001091(n). a(0):=0. - Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1-x)*(1-8*x+x^2)) = x*(1+x)/(1-9*x+9*x^2-x^3).
EXAMPLE
MAPLE
a:= n-> (<<1|1|1>, <1|2|3>, <1|3|6>>^n)[1, 3]:
seq(a(n), n=1..23); # Alois P. Heinz, Jun 06 2021
MATHEMATICA
a[n_] := (MatrixPower[{{1, 1, 1}, {1, 2, 3}, {1, 3, 6}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 20}]; (* Robert G. Wilson v, May 29 2004 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 27 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 29 2004
STATUS
approved