The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343276 a(n) = n! * [x^n] -x*(x + 1)*exp(x)/(x - 1)^3. 1
 0, 1, 10, 81, 652, 5545, 50886, 506905, 5480056, 64116657, 808856290, 10959016321, 158851484100, 2454385635481, 40285778016862, 700261611998985, 12853532939027056, 248482678808005345, 5047002269952482106, 107466341437781300017, 2394019421567804960380 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) = Sum_{k=0..n} rf(n - k + 1, k)*k^2, where rf is the rising factorial. a(n) = (2 + n*(n + 2))*a(n - 1)/(n - 1) - (n + 1)*a(n - 2) for n >= 3. A002775(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(k). MAPLE egf := -x*(x + 1)*exp(x)/(x - 1)^3: ser := series(egf, x, 32): seq(n!*coeff(ser, x, n), n = 0..20); MATHEMATICA a[n_] := Sum[Pochhammer[n - k + 1, k]*k^2, {k, 0, n}]; Table[a[n], {n, 0, 20}] PROG (SageMath) def a(n): return sum(rising_factorial(n - k + 1, k)*k^2 for k in (0..n)) print([a(n) for n in (0..20)]) (Python) def a(): a, b, n = 0, 1, 2 yield 0 while True: yield b a, b = b, -(n + 1)*a + ((2 + n*(n + 2))*b)//(n - 1) n += 1 A343276 = a(); print([next(A343276) for _ in range(21)]) CROSSREFS Cf. A002775, A093964. Sequence in context: A095004 A037541 A037485 * A350503 A277205 A308862 Adjacent sequences: A343273 A343274 A343275 * A343277 A343278 A343279 KEYWORD nonn AUTHOR Peter Luschny, Apr 20 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 22:12 EST 2022. Contains 358484 sequences. (Running on oeis4.)