login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093964
a(n) = Sum_{k=1..n} k*k!*C(n,k).
9
0, 1, 6, 33, 196, 1305, 9786, 82201, 767208, 7891281, 88776910, 1085051121, 14322674796, 203121569833, 3080677142466, 49764784609065, 853110593298256, 15469738758475041, 295858753755835158, 5951981987323272001, 125652953065713520020, 2777591594084193600441
OFFSET
0,3
COMMENTS
Limit to which the columns of array A093966 converge.
Number of objects in all permutations of n objects taken 1,2,...,n at a time. Example: a(2)=6 because the permutations of {a,b} taken 1 and 2 at a time are: a,b,ab and ba, containing altogether 1+1+2+2=6 objects. a(n)=Sum(k*A008279(n,k),k=1..n). - Emeric Deutsch, Aug 16 2006
The number of sequences -where each member is an element in a set consisting of n elements- such that the last member is a repetition of a former member. Example: Set of possible members: {l,r}. Sequences such that the last member is a repetition of a former member: l,l; r,r; l,r,l; l,r,r; r,l,l; r,l,r. a(n)=Sum(k*A008279(n,k),k=1..n). [From Franz Fritsche (ff(AT)simple-line.de), Feb 22 2009]
The total number of elements in all ascending runs (including runs of length 1) over all permutations of {1,2,...,n}. a(2) = 6 because in the permutations [1,2] and [2,1] there are 4 runs of length 1 and 1 run of length 2. a(n) = Sum_{k>=1} A132159(n,k)*k. - Geoffrey Critzer, Feb 24 2014
LINKS
FORMULA
E.g.f.: x*exp(x)/(1-x)^2. - Vladeta Jovovic, Apr 24 2004
a(n) = 1 + (n-1)*floor(e*n!) = 1 + (n-1)*A000522(n) = A000522(n+1) - 2*A000522(n) = A001339(n) - A000522(n). - Henry Bottomley, Dec 22 2008
a(n) = n if n < 2, a(n) = n*((n+1)/(n-1)*a(n-1) - a(n-2)) for n >= 2. - Alois P. Heinz, Jan 21 2013
E.g.f.: x*(1- 12*x/(Q(0)+6*x-3*x^2))/(1-x)^2, where Q(k) = 2*(4*k+1)*(32*k^2+16*k+x^2-6) - x^4*(4*k-1)*(4*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
G.f.: conjecture: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
a(n) = n*a(n-1) + A007526(n), a(0) = 0. - David M. Cerna, May 12 2014
EXAMPLE
G.f. = x + 6*x^2 + 33*x^3 + 196*x^4 + 1305*x^5 + 9786*x^6 + 82201*x^7 + ...
MAPLE
seq(add(k*n!/(n-k)!, k=1..n), n=0..20); # Emeric Deutsch, Aug 16 2006
# second Maple program:
a:= proc(n) a(n):=`if`(n<2, n, n*((n+1)/(n-1)*a(n-1)-a(n-2))) end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 21 2013
MATHEMATICA
nn=21; Range[0, nn]!CoefficientList[Series[D[Exp[y x]/(1-x)^2, y]/.y->1, {x, 0, nn}], x] (* Geoffrey Critzer, Feb 24 2014 *)
PROG
(PARI) a(n)=sum(k=1, n, k*k!*binomial(n, k))
(Magma) [0] cat [n le 2 select 6^(n-1) else n*((n+1)*Self(n-1) - (n-1)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, Dec 29 2021
(Sage) [factorial(n)*( x*exp(x)/(1-x)^2 ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 29 2021
CROSSREFS
Row n=2 of A210472. - Alois P. Heinz, Jan 23 2013
Sequence in context: A286187 A260774 A218182 * A361776 A193665 A097662
KEYWORD
nonn
AUTHOR
Ralf Stephan, Apr 20 2004
EXTENSIONS
a(0) inserted by Alois P. Heinz, Jan 21 2013
STATUS
approved