login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093966
Array read by antidiagonals: number of {112,221}-avoiding words.
4
1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 6, 21, 16, 5, 1, 6, 33, 52, 25, 6, 1, 6, 33, 124, 105, 36, 7, 1, 6, 33, 196, 345, 186, 49, 8, 1, 6, 33, 196, 825, 786, 301, 64, 9, 1, 6, 33, 196, 1305, 2586, 1561, 456, 81, 10, 1, 6, 33, 196, 1305, 6186, 6601, 2808, 657, 100, 11
OFFSET
1,3
COMMENTS
A(n,k) is the number of n-long k-ary words that simultaneously avoid the patterns 112 and 221.
LINKS
A. Burstein and T. Mansour, Words restricted by patterns with at most 2 distinct letters, arXiv:math/0110056 [math.CO], 2001.
FORMULA
A(n, k) = k!*binomial(n, k) + Sum_{j=1..k-1} j*j!*binomial(n, j), for 2 <= k <= n, otherwise Sum_{j=1..n} j*j!*binomial(n, j), with A(1, k) = 1 and A(n, 1) = n.
From G. C. Greubel, Dec 29 2021: (Start)
T(n, k) = A(k, n-k+1).
Sum_{k=1..n} T(n, k) = A093963(n).
T(n, 1) = 1.
T(n, n) = n.
T(n, n-1) = (n-1)^2.
T(n, n-2) = A069778(n).
T(2*n-1, n) = A093965(n).
T(2*n, n) = A093964(n), for n >= 1. (End)
EXAMPLE
Array, A(n, k), begins as:
1, 1, 1, 1, 1, 1, 1 ... 1*A000012(k);
2, 4, 6, 6, 6, 6, 6 ... 2*A158799(k-1);
3, 9, 21, 33, 33, 33, 33 ... ;
4, 16, 52, 124, 196, 196, 196 ... ;
5, 25, 105, 345, 825, 1305, 1305 ... ;
6, 36, 186, 786, 2586, 6186, 9786 ... ;
7, 49, 301, 1561, 6601, 21721, 51961 ... ;
Antidiagonal triangle, T(n, k), begins as:
1;
1, 2;
1, 4, 3;
1, 6, 9, 4;
1, 6, 21, 16, 5;
1, 6, 33, 52, 25, 6;
1, 6, 33, 124, 105, 36, 7;
1, 6, 33, 196, 345, 186, 49, 8;
1, 6, 33, 196, 825, 786, 301, 64, 9;
1, 6, 33, 196, 1305, 2586, 1561, 456, 81, 10;
MATHEMATICA
A[n_, k_]:= A[n, k]= If[n==1, 1, If[k==1, n, If[2<=k<n+1, (1-k)*k!*Binomial[n, k] + Sum[j*j!*Binomial[n, j], {j, k}], Sum[j*j!*Binomial[n, j], {j, n}] ]]];
T[n_, k_]:= A[k, n-k+1];
Table[T[k, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 29 2021 *)
PROG
(PARI) A(n, k) = if(n >= k+1, sum(j=1, k, j*j!*binomial(k, j)), if(n<2, if(n<1, 0, k), n!*binomial(k, n) + sum(j=1, n-1, j*j!*binomial(k, j))));
T(n, k) = A(n-k+1, k);
for(n=1, 15, for(k=1, n, print1(T(n, k), ", ") ) )
(Sage)
@CachedFunction
def A(n, k):
if (n==1): return 1
elif (k==1): return n
elif (2 <= k < n+1): return factorial(k)*binomial(n, k) + sum( j*factorial(j)*binomial(n, j) for j in (1..k-1) )
else: return sum( j*factorial(j)*binomial(n, j) for j in (1..n) )
def T(n, k): return A(k, n-k+1)
flatten([[T(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Dec 29 2021
CROSSREFS
Cf. A069778, A093963 (antidiagonal sums), A093964, A093965 (main diagonal).
Sequence in context: A179000 A210559 A180803 * A103406 A142978 A152060
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Apr 20 2004
STATUS
approved