login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093963
Antidiagonal sums of array in A093966.
2
1, 3, 8, 20, 49, 123, 312, 824, 2221, 6235, 17904, 53348, 162545, 511747, 1645776, 5448600, 18404189, 63794611, 225353368, 814801812, 2999022641, 11274044075, 43100574472, 167987074584, 665229445293, 2681607587627, 10973746015456
OFFSET
1,2
LINKS
FORMULA
Conjecture: 2*a(n) -5*a(n-1) -(n+2)*a(n-2) +2*(n+6)*a(n-3) +(n-13)*a(n-4) -4*(n-3)*a(n-5) +2*(n-3)*a(n-6) = 0. - R. J. Mathar, Nov 10 2013
MATHEMATICA
A[n_, k_]:= A[n, k]= If[n==1, 1, If[k==1, n, If[2<=k<n+1, (1-k)*k!*Binomial[n, k] + Sum[j*j!*Binomial[n, j], {j, k}], Sum[j*j!*Binomial[n, j], {j, n}]]]];
a[n_]:= a[n]= Sum[A[k, n-k+1], {k, n}];
Table[a[n], {n, 30}] (* G. C. Greubel, Dec 29 2021 *)
PROG
(Sage)
@CachedFunction
def A(n, k):
if (n==1): return 1
elif (k==1): return n
elif (2 <= k < n+1): return factorial(k)*binomial(n, k) + sum( j*factorial(j)*binomial(n, j) for j in (1..k-1) )
else: return sum( j*factorial(j)*binomial(n, j) for j in (1..n) )
@CachedFunction
def a(n): return sum( A(k, n-k+1) for k in (1..n) )
[a(n) for n in (1..30)] # G. C. Greubel, Dec 29 2021
CROSSREFS
Sequence in context: A054185 A171853 A330458 * A261233 A346944 A027219
KEYWORD
nonn
AUTHOR
Ralf Stephan, Apr 20 2004
STATUS
approved