login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093962
Continued fraction expansion of binomial(Pi,e) (A093961).
2
1, 1, 9, 2, 1, 2, 2, 1, 3, 11, 5, 3, 9, 3, 2, 2, 2, 1, 2, 4, 2, 1, 4, 3, 1, 1, 6, 1, 2, 5, 25, 1, 1, 2, 18, 1, 9, 2, 2, 4, 10, 1, 2, 2, 1, 5, 1, 20, 50, 2, 1, 1, 3, 2, 1, 1, 87, 1, 5, 1, 5, 47, 1, 1, 1, 1, 1, 2, 3, 1, 10, 3, 2, 1, 1, 1, 1, 9, 6, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 9, 9, 2, 13, 1, 7, 1, 4, 1, 2, 12
OFFSET
0,3
COMMENTS
The increasing partial quotients are 1, 9, 11, 25, 50, 87, 514, 610, 647, 676, 2710, 10647, ...
LINKS
EXAMPLE
1.903568065729906338900833721... = 1 + 1/(1 + 1/(9 + 1/(2 + 1/(1 + ...)))). - Harry J. Smith, Jun 17 2009
MATHEMATICA
ContinuedFraction[ Binomial[Pi, E], 100]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 5400); e=exp(1); x=contfrac(gamma(Pi+1)/(gamma(e+1)*gamma(Pi-e+1))); for (n=1, 5000, write("b093962.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Jun 17 2009
(Sage) continued_fraction_list( gamma(pi+1)/(gamma(e+1)*gamma(pi -e +1)), nterms=110) # G. C. Greubel, Dec 29 2021
CROSSREFS
Cf. A093961 (decimal expansion).
Sequence in context: A379587 A319533 A010160 * A350298 A230191 A198984
KEYWORD
cofr,nonn
AUTHOR
Robert G. Wilson v, Apr 20 2004
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 07 2024
STATUS
approved